Circuitos electrónicos digitales Unidades Aritméticas Lógicas

Índice

- Introducción
- Circuitos sumadores básicos
- Sumador paralelo de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

Introducción

- Los sistemas digitales poseen una gran potencia de cálculo ya que permiten ejecutar con gran velocidad operaciones aritméticas y lógicas
- Una operación aritmética en un computador puede ser realizada de dos formas:

 - software: existe un algoritmo que descompone esa operación en otras más elementales que son realizadas mediante hardware
- Aritmética binaria

 - Coma flotante

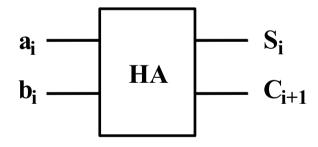
Introducción

- Hardware aritmético en los procesadores:
 - □ Todos los procesadores poseen al menos un sumadorrestador
- Software aritmético en los procesadores:

 - ⇒ A medida que aumenta la complejidad se incluyen instrucciones de multiplicación y división
 - En los más complejos se tienen operaciones más abstractas como exponenciales, logaritmos, etc.

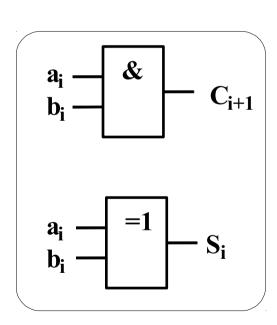
Introducción

- Las principales diferencias entre la forma de operar manual y la de un computador digital son:
 - \Rightarrow La base del sistema de numeración es B = 2 (binaria).
 - La forma de representar números con signo normalmente no es con signo-magnitud, sino a través de los complementos (a 2 o a 1).
 - ⇒ El número de bits de los datos está acotado entonces:
 - ✓ Errores de desbordamiento, de precisión
 - ✓ Incumplimiento de propiedades algebráicas: las operaciones se vuelven no-cerradas
 - ✓ Pueden incumplirse las propiedades asociativas y distributiva).

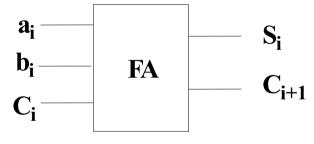

Índice

- Introducción
- Circuitos sumadores básicos
- Sumador paralelo de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

- Semisumador o Half Adder (HA)
 - ⇒ Se trata del circuito que suma dos bits.
 - Obtiene como salida el bit de suma y el acarreo.

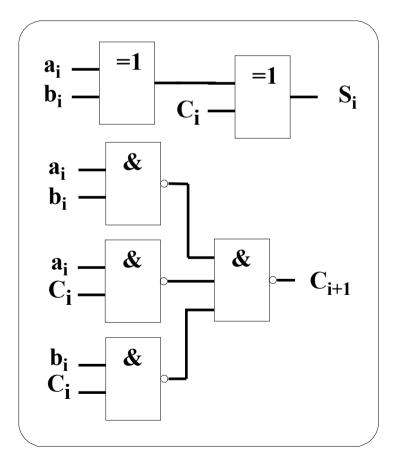

a _i	b _i	C_{i+1}	Si
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	0

- Semisumador o Half Adder (HA)
 - Una posible implementación mediante puertas lógicas


$$C_{i+1} = a_i \cdot b_i$$

$$S_i = a_i \oplus b_i$$

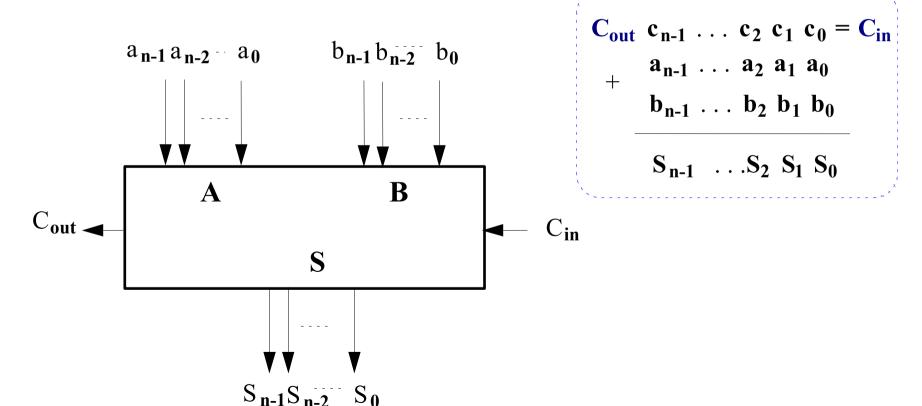
- Sumador completo Full Adder (FA)
 - ⇒ Permite realizar la suma de tres bits simultáneamente.
 - ⇒ Obtiene como salida el bit de suma y el acarreo.


$\mathbf{a_i}$	$\mathbf{b_i}$	$C_{\mathbf{i}}$	C_{i+1}	S_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

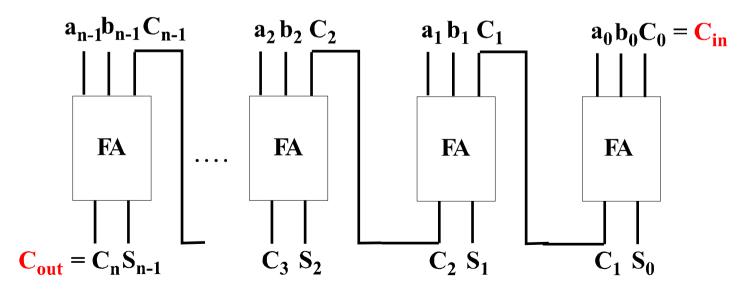
- Sumador completo Full Adder (FA)
 - Una implementación mediante puertas lógicas

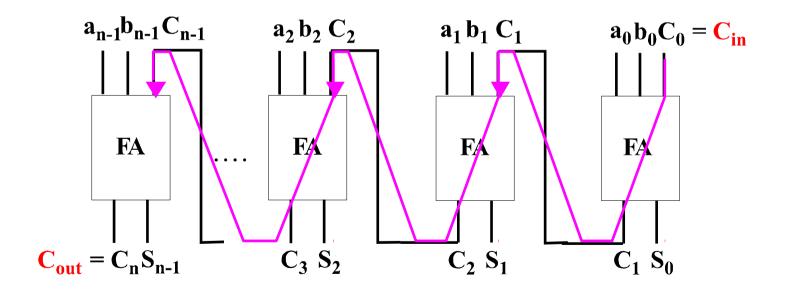
$$C_{i+1} = a_i \cdot b_i + a_i \cdot C_i + b_i \cdot C_i$$

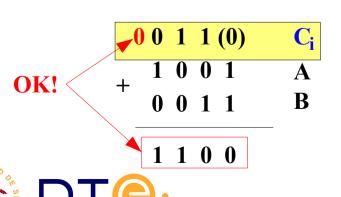
$$S_i = a_i \oplus b_i \oplus C_i$$

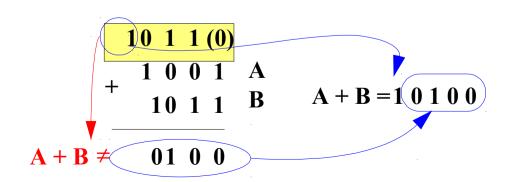


Índice


- Introducción
- Circuitos sumadores básicos
- Sumador paralelo de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

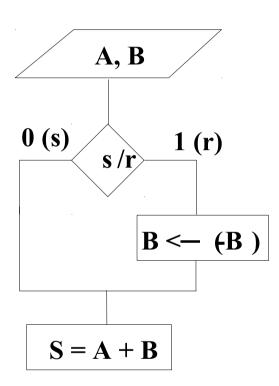

 Un sumador paralelo de n bits, es un dispositivo lógico combinacional de 2n+1 entradas y n+1 salidas que realiza la suma de dos números binarios de n bits.


- Sumador paralelo con acarreo serie
 - ⇒ Es el más intuitivo y tiene un coste razonablemente bajo.
 - ➡ También es conocido como sumador de rizado o ripple adder
 - Se trata de un circuito modular

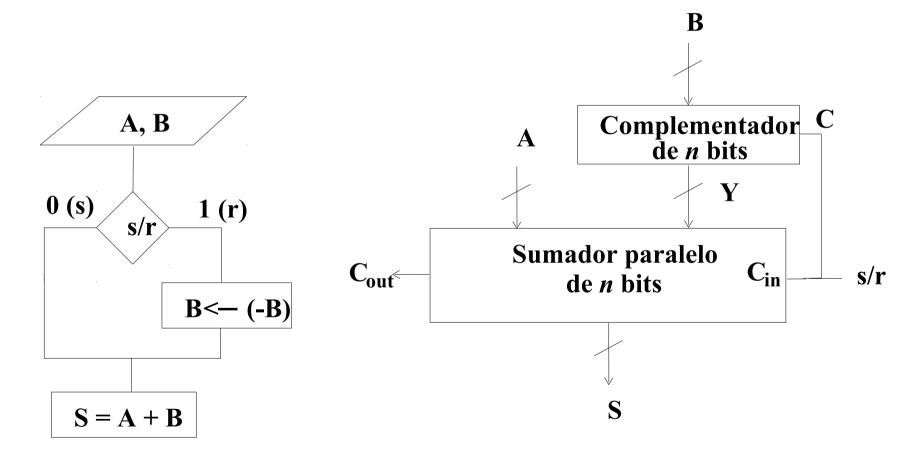


- Es lento debido a la propagación serie del acarreo
- El tiempo que tarda en realizarse una suma crece linealmente con el número de bits

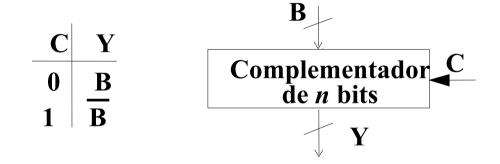
- El problema del desbordamiento en la suma de magnitudes
 - Con n bits el rango representable es [0,2n-1]
 - ⇒ Si A+B > 2n-1
 - el resultado no es representable
 - ✓ hay desbordamiento (overflow)
 - Cout señala la existencia de desbordamiento
 - ⇒ En caso de desbordamiento, el resultado correcto está en el número de n+1 bits (A + B = CoutSn-1 S0)



Índice


- Introducción
- Circuitos sumadores básicos
- Sumador paralelo de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

- La suma-resta de números con signo
 - Calcular la diferencia A-B es equivalente a calcular A + (-B)
 - ✓ la resta aritmética se reduce a una suma
 - ✓ implica trabajar con números con signo
 - ⇒ B es (- B) en complemento a 1
 - ⇒ [B + 1] es (- B) en complemento a 2



- La suma-resta de números en complemento a 2
 - \Rightarrow En general: A B = A + (-B)

 El complementador es simplemente una colección de puertas XOR

- La suma-resta de números en complemento a 2
 - Utilizaremos la notación complemento a 2 para representar los números positivos y negativos

$$\begin{array}{r}
 1001 = -7 \\
 \hline
 0101 = +5 \\
 \hline
 1110 = -2
 \end{array}$$

$$11 00 = -4$$

$$1111 = -1$$

$$11011 = -5$$

$$\begin{array}{r}
 11\ 00 = -4 \\
 \hline
 0100 = +4 \\
 \hline
 1\ 0000 = 0
 \end{array}$$

$$0101 = +5$$

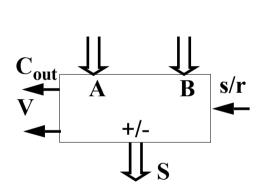
$$0100 = +4$$

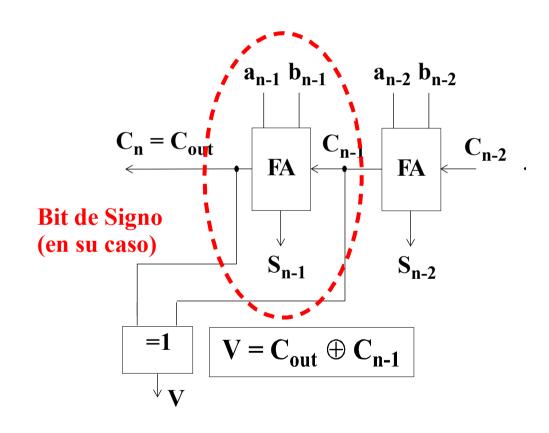
$$1001 = -7$$

$$0011 = +3$$
 $0100 = +4$
 $0111 = +7$

$$1001 = -7
1010 = -6
10011 = +3$$

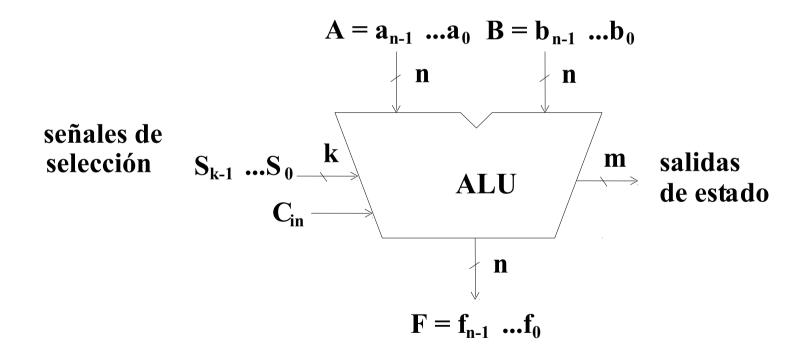
- El problema del desbordamiento en la suma-resta de números con signo
 - Se pone de manifiesto porque la magnitud ocupa un bit más y el bit de signo no es correcto




- Problema de desbordamiento en la suma-resta de números con signo. En la suma, el desbordamiento se produce cuando:
 - al sumar dos números positivos se obtiene uno negativo
 - al sumar dos números negativos se obtiene uno positivo

$$V = C_{out} \oplus C_{n-1}$$

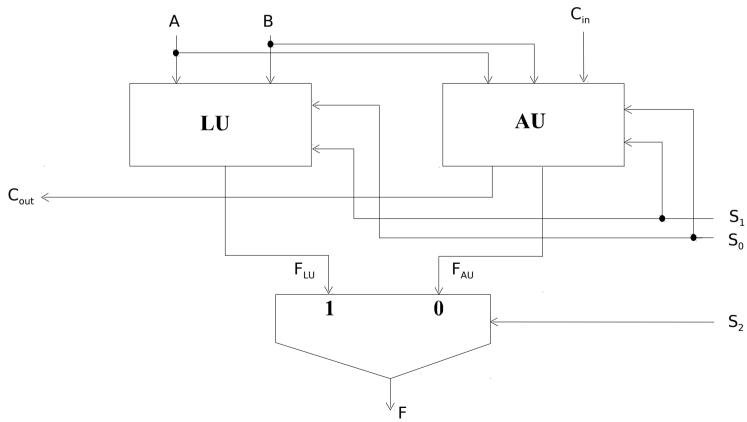
El sumador restador quedaría:


Índice

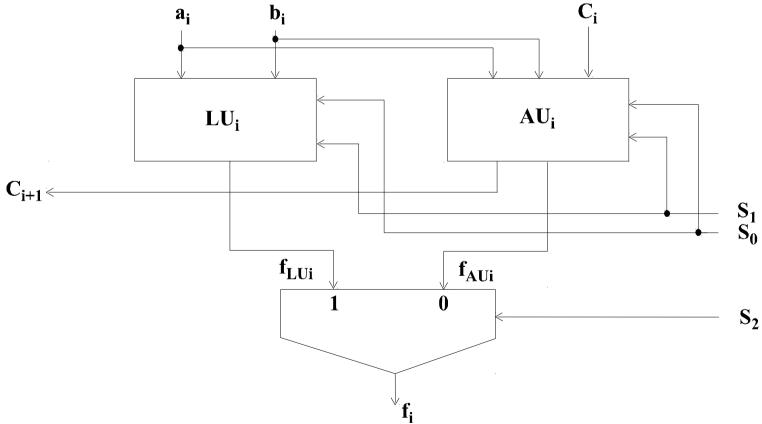
- Introducción
- Circuitos sumadores básicos
- Sumador paralelo de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

- Es el circuito donde se realiza el procesado de datos
- Procesado: operaciones aritméticas y lógicas.
 Normalmente se opera sobre dos datos
- Usualmente pueden realizar diversas operaciones.
 Para elegirlas se incluyen unas señales de selección
- Además de las salidas que muestran el resultado de la operación, se incluyen otras salidas (flags) de estado o de condición.
- Típicamente son C_{out}, V, Z (Z=1 si el resultado es 0) y
 S (signo)

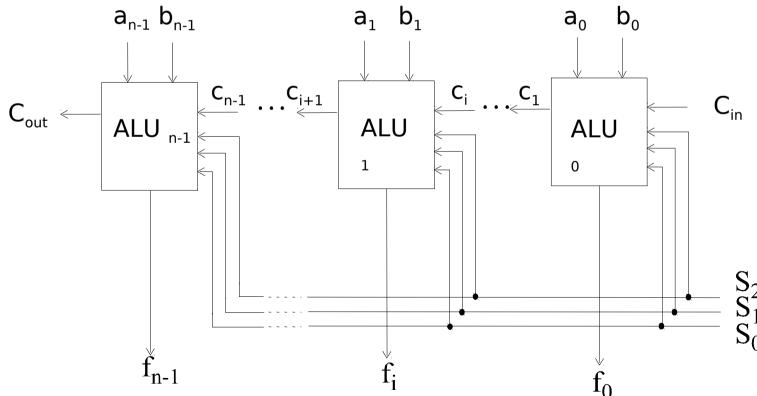
Representación gráfica de una ALU



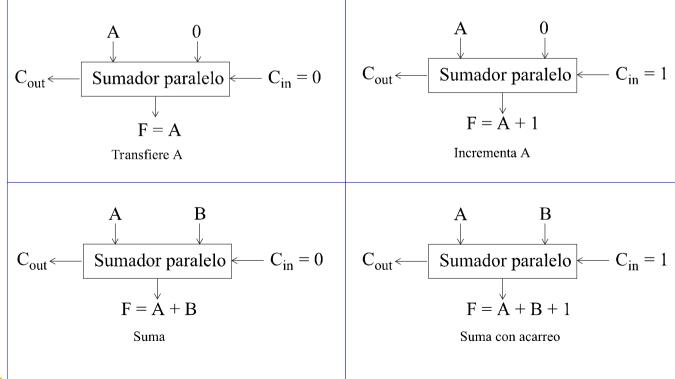
Ejemplo de una ALU


S ₂ S ₁ S ₀	Función ALU			
	$C_{in} = 0$	$C_{in} = 1$		
0 0 0	F = A	F = A + 1		
0 0 1	F = A + B	F = A + B + 1		
0 1 0	$F = A + \overline{B}$	$F = A + \overline{B} + 1$		
0 1 1	F = A - 1	F = A		
1 0 0	F = A AND B			
1 0 1	F = A OR B			
1 1 0	F = NOT A			
1 1 1	F = A XOR B			

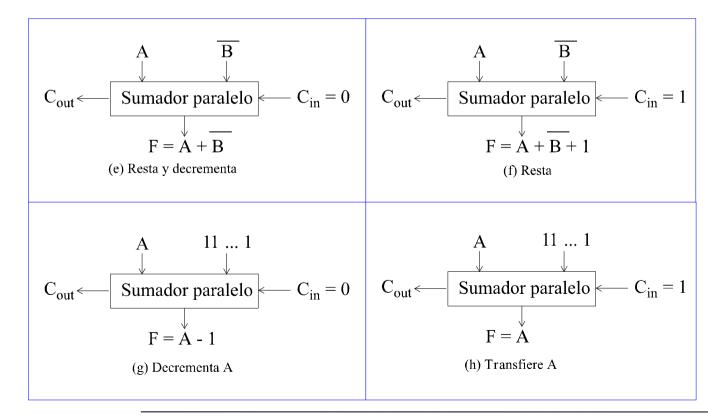
- Realización de una ALU
 - ⇒ Se separan las partes aritmética (AU) y lógica (LU).



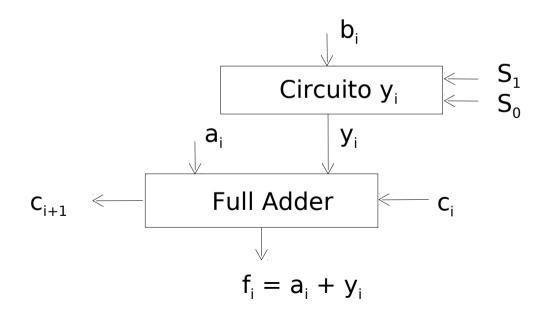
- Realización de una ALU
 - Implica la realización de la ALU para cada pareja de bits entrantes (etapa típica)



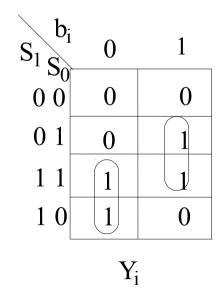
- Realización de una ALU

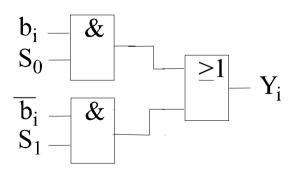

- Diseño de la Unidad Aritmética
 - El bloque aritmético consta básicamente de un sum paralelo
 - Para obtener las diferentes operaciones se ha de modificar los datos de entrada al sumador

- Diseño de la Unidad Aritmética
 - El bloque aritmético consta básicamente de un sum paralelo
 - Para obtener las diferentes operaciones se ha de modificar los datos de entrada al sumador

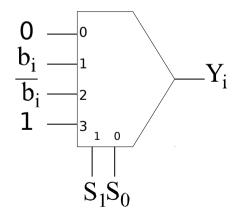


- Diseño de la Unidad Aritmética
 - El bloque aritmético consta básicamente de un sum paralelo
 - Para obtener las diferentes operaciones se ha de modificar los datos de entrada al sumador


S ₂ S ₁ S ₀	Función ALU					
	$C_{in} = 0$		$C_{in} = 1$			
0 0 0	F = A	Α	0	F = A + 1	А	0
0 0 1	F = A + B	Α	В	F = A + B + 1	А	В
0 1 0	$F = A + \overline{B}$	А	NOT (B)	$F = A + \overline{B} + 1$	А	NOT (B)
0 1 1	F = A - 1	Α	111	F = A	А	111

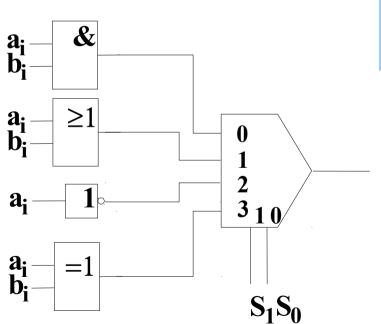

- Diseño de la Unidad Aritmética
 - El bloque aritmético consta básicamente de un sum paralelo
 - ⇒ Para obtener las diferentes operaciones se ha de modificar los datos de entrada al sumador

 Diseño del "circuito yi" con puertas lógicas


S_1S_0	Yi
0 0	0
0 1	b _i
10	$\overline{\mathbf{b}}_{\mathbf{i}}$
11	1

 Diseño del "circuito yi" con un multiplexor

S_1S_0	Y_i
0 0	0
0 1	b i
10	$\overline{\mathbf{b}}_{\mathbf{i}}$
11	1


 El acarreo de salida nos puede dar una información muy importante

S ₁ S ₀ C _{in}		Operación	C _{out} =1 si	Comentario
0 0 0	F=A	Transferir A		C _{out} =0 siempre
0 0 1	F=A+1	Incrementar A	A=2 ⁿ -1	Si C _{out} =1 , F=0
0 1 0	F=A+B	Sumar A+B	A+B≥2 ⁿ	Overflow si C _{out} =1
0 1 1	F=A+B+1	Incrementar A+B	A+B≥2 ⁿ -1	Overflow si C _{out} =1
1 0 0	F=A+B'	Restar A-B en Ca1	A>B	Si $C_{out} = 0 \rightarrow A \le B y F = Ca1(B-A)$
1 0 1	F=A+B'+1	Restar A-B en Ca2	A≥B	Si $C_{out} = 0 \rightarrow A < B y F = Ca1(B-A)$
1 1 0	F=A-1	Decrementar A	A≠0	Si $C_{out} = 0 \rightarrow A = 0$
1 1 1	F=A	Transferir A		C _{out} =1 siempre

- Diseño de la Unidad Lógica
 - Diseño de la etapa típica con un multiplexor y puertas lógicas

 f_{LUi}

