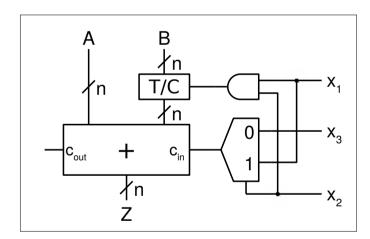
Tarea 7

Ejercicio 1. Diseñe un circuito aritmético con una entrada x de 8 bits y una salida z de 8 bits tal que z = x + 79. Emplee circuitos sumadores básicos para el diseño. Añada una salida de desbordamiento.

Ejercicio 2. Diseñe un circuito aritmético con una entrada x de 8 bits y una saliza z de 8 bits tal que z = 6 * x. Emplee un sólo sumador de magnitudes. Añada una salida de desbordamiento.

Ejercicio 3. Calcule el mínimo número de bits para hacer las siguientes operaciones en complemento a 2. Realice las operaciones en binario y compruebe el resultado operando en decimal.


a)
$$(+42) + (-13)$$

Ejercicio 4. Diseñe un sumador de 8 bits de número con/sin signo que tenga salida de desbordamiento. El desbordamiento debe indicar esta condición de forma correcta dependiendo si se opera con números con signo (complemento a 2) o sin signo. Las señales de entrada y salida son:

- a, b: datos de entrada.
- u: tipo de entrada (0-con signo, 1-sin signo).
- z: resultado de la suma.
- ov: salida de desbordamiento (0-no desbordamiento, 1-desbordamiento).

Implemente el circuito usando FA, HA y puertas lógicas y/o subsistemas.

Ejercicio 5. En el circuito de la figura hay, entre otros, un sumador paralelo de n bits y un bloque "transfiere/complementa" (T/C). Describa funcionalmente el circuito. Esto es, represente su operación en forma de tabla y explíquelo verbalmente.

op[2:0]	Operation	Z
000	Addition	a + b
001	Substraction	a - b
010	Increment 1	a + 1
011	Decrement 1	a - 1
100	Increment 2	a + 2
101	Decrement 2	a - 2
110	Increment 4	a + 4
111	Decrement 4	a - 4

Ejercicio 6. Diseñe una unidad aritmética con las operaciones indicadas en la tabla. Incluya una salida de desbordamiento (ov). Realice el diseño empleando FA, HA y puertas lógicas o subsistemas según necesidad.

Ejercicio 7. (Trabajo voluntario) Describa en Verilog el circuito que se pide en el ejercicio 2. Puede emplear para su descripción operadores de suma y desplazamiento de bits, pero no de producto. Realice un banco de pruebas para comprobar su operación.

Ejercicio 8. (Trabajo voluntario) Describa y simule en Verilog la unidad aritmética del ejercicio 6. Use los ejemplos de la unidad 5 de *curso-verilog.v* 1 como referencia.