CRC-GE Mayo, 2020

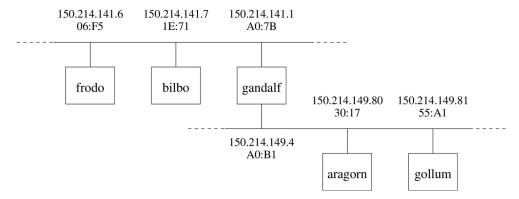
Tarea 11. Internet

Ejercicios teóricos

Ejercicio 1. Para cada configuración siguiente, indica cuántos bits especifican la parte de la subred en la dirección IP y escribe la dirección IP de la subred.

a) IP: 150.214.149.17, Máscara: 255.255.255.0

b) IP: 10.1.11.192, Máscara: 255.255.248.0


Ejercicio 2. En la red de la figura se muestra parte de las máquinas de una red con sus direcciones físicas e IP. La máquina frodo envía dos paquetes del protocolo IP con direcciones de destino diferentes, uno para la dirección IP 150.214.141.7 (paquete 1) y otro para la 150.214.149.81 (paquete 2). En la configuración de los protocolos TCP/IP de frodo figuran los siguientes datos:

Dirección IP: 150.214.141.6

Máscara de subred: 255.255.255.0

Ruta predeterminada (Gateway): 150.214.141.1

• DNS: 150.214.186.69

Indica las direcciones físicas que aparecerán en las cabeceras de cada uno de los dos paquetes cuando sean colocados en la red de área local a la que pertenece frodo.

Ejercicio 3. Supón que un cliente A inicia una conexión TCP con un servidor web de nombre S. Más o menos al mismo tiempo, un cliente B también inicia una conexión TCP con S.

- a) Indica posibles números de puerto origen y destino para:
 - Los segmentos enviados de A a S
 - Los segmentos enviados de B a S
 - Los segmentos enviados de S a A
 - Los segmentos enviados de S a B
- b) Si A y B están en *hosts* diferentes, ¿podría el número de puerto origen de los segmentos que van de A a S ser el mismo que el de los segmentos que van de B a S? ¿Por qué?
- c) ¿Y si los procesos clientes A y B están en el mismo host? ¿Por qué?

Ejercicio 4. Un cliente desea enviar 4500 bytes de datos a un servidor empleando el protocolo TCP sobre un enlace Ethernet de 100Mb/s. El tamaño de datos máximo de los segmentos TCP (MSS) es de 1500B. Se considera despreciable el tamaño de las cabeceras TCP, IP y Ethernet, y los tiempos de procesamiento de los protocolos. El tiempo de ida y vuelta (RTT) entre cliente y servidor es de 1ms.

a) Dibuja el diagrama temporal de intercambio de segmentos entre cliente y servidor para toda la comunicación, incluyendo inicio y fin de la conexión, suponiendo que se emplea el método de

CRC-GE Mayo, 2020

parada y espera. ¿Cuánto tiempo tardaría en completarse el envío?

b) Dado el valor de RTT y el tiempo de transmisión de cada paquete, ¿cuántos paquetes podrían mantenerse "en vuelo" en caso de usar *pipelining*?

c) Repite el apartado a) suponiendo que el cliente realiza *pipelining* y que es posible mantener varios paquetes "en vuelo" (según lo calculado en b)).

Ejercicios prácticos

Ejercicio 1. Obtén la configuración de red de la interfaz principal del ordenador que esté utilizando: dirección IP, máscara de subred, ruta predeterminada, servidores de nombres, etc.

Ejercicio 2. Comprueba el funcionamiento de la red usando el comando "ping" sobre la dirección IP del router predeterminado de tu red y equipos externos: servidores web, de nombres, etc.

Ejercicio 3. Comprueba el funcionamiento del servidor de nombres de dominio (DNS) empleando el comando "host". En particular:

- a) Obtén la dirección IP del "buzon.us.es"
- b) Obtén el nombre del servidor de correos principal de la Universidad de Sevilla (entrada MX).

Ejercicio 4. Observa el estado de las conexiones de red con "netstat":

- a) Estado de todas las conexiones TCP: opción "-t".
- b) Estado de conexiones TCP en estado de escucha: opción "-lt".
- c) Estado de conexiones UDP: opción "-u".
- d) Estado de conexiones TCP y UDP en estado de escucha: opción "-tu".

Puedes añadir las siguientes opciones a las anteriores para obtener más información:

- "n": para obtener información en formato numérico (direcciones IP y números de puertos).
- "p": para obtener información del programa asociado a cada conexión.