
Design using VHDL

Review

&

Good Design Practices

For ECE412 Spring 10
Christine Chen

Slides by Alex Papakonstantinou

HDL Characteristics
• VHDL and Verilog are both hardware description languages

• Look similar to conventional programming languages

• However, they have a significant difference with regards to programming languages: they are
inherently Parallel

• Allow different levels of abstraction:

– Behavioral

Result := a*b + c mod i

– Structural

mul0: MUL

port map (A_op, B_op, R1)

mod0: MOD

port map (C_op, I_op, R2)

add1: ADD

port map (R1, R2, Result)

Concurrent Statements

Simple Signal Assignment:

sum <= (a XOR b) XOR cin;

carry <= a AND b ;

Conditional Signal Assignment:

z <= a WHEN s1=‘0’ AND s0=‘0’ ELSE

b WHEN s1=‘0’ AND s0=‘1’ ELSE

c WHEN s1=‘1’ AND s0=‘0’ ELSE

d ;

Selected Signal Assignment:

WITH sel SELECT

z <= a WHEN “00”,

b WHEN “01”,

c WHEN “10”,

d WHEN “11”; { • No two choices can overlap
• All possible cases must be covered if “when

others” is not present
• All options have equal priority

• Priority is inferred based on the order of
selection values

Combinational Procedures as
Concurrent Statements

• Combinational process:
PROCESS (a, b, c)

BEGIN

IF (c = ‘1’) THEN

out <= a;

ELSE

out <= b;

END IF;

END PROCESS;

• Make sure there are no missing clauses
(otherwise a latch may be inferred)

• Latches should be avoided in
synchronous designs

• Sensitivity list is usually ignored during synthesis (it must
contain all read signals)

• Sensitivity list can be replaced by “WAIT ON a,b,c” at the end
of process

• Use either WAIT ON or Sens. List, NOT both

Clocked Procedures
as Concurrent Statements

• Sequential process:
PROCESS (clk)

BEGIN

IF (clk’EVENT AND clk = ‘1’) THEN

IF (c = ‘1’) THEN

out <= a;

END IF;

END IF;

END PROCESS;

• Missing clauses do not infer any latches
in this case

• Sensitivity list must only contain clock signal

Combinational vs Sequential Process

+ / -

+ / -

a

b

c

PROCESS (a, b, c)
 BEGIN
 IF (c = ‘1’) THEN
 tmp <= a + b;
 out <= tmp + c;
 ELSE
 tmp <= a - b;
 out <= tmp – c;
 END IF;
END PROCESS;

PROCESS (clk)
 BEGIN
 IF rising_edge(clk) THEN
 IF (c=‘1’) THEN
 tmp <= a + b;
 out <= tmp + c;
 ELSE
 tmp <= a - b;
 out <= tmp – c;
 END IF;
 END IF;
END PROCESS;

+ / -

a

b

+ / -
c

Result is ready 2 cycles later!

Synchronous / Asynchronous
Reset in Clocked Procedures

• Synchronous Reset:
PROCESS (clk)

BEGIN

IF (clk’EVENT AND clk = ‘1’) THEN

IF (rst = ‘1’) THEN

out <= ‘0’;

ELSE

out <= a;

END IF;

END IF;

END PROCESS;

• Asynchronous Reset
PROCESS (clk, rst)

BEGIN

IF (rst = ‘1’) THEN

out < ‘0’;

ELSIF (clk’EVENT AND clk = ‘1’) THEN

out <= a;

END IF;

END PROCESS;

Types of Procedural Assignments

Both Variables and Signals can be
assigned within procedures

“<=“ signal assignments
• Evaluated in parallel regardless of

their order
• Should be preferred in sequential

procedures to implement flip-flops

“:=“ variable assignments
• Evaluated in the order statements are

written
• Good for algorithm implementation with

combinational logic
• Variables only accessible within

procedure
• Registers are generated for variables

that might be read before being updated
(since variables keep their value
between process calls)!

Signal vs Variable Assignment

+

a

b

c

z

+

b

y

PROCESS (a, b, c)
 BEGIN
 VARIABLE M, N : integer;
 M := a;
 N := b;
 z <= M + N;
 M := c ;
 y <= M + N;
 END PROCESS;

PROCESS (a, b, c, M, N)
 BEGIN
 M <= a;
 N <= b;
 z <= M + N;
 M <= c;
 y <= M + N;
 END PROCESS;

+

c

b

c

z

+

b

y

?

?

Signal vs Variable Assignment

+

a

b

c

z

+

b

y

PROCESS (a, b, c)
 BEGIN
 VARIABLE M, N : integer;
 M := a;
 N := b;
 z <= M + N;
 M := c ;
 y <= M + N;
 END PROCESS;

PROCESS (a, b, c, M, N)
 BEGIN
 M <= a;
 N <= b;
 z <= M + N;
 M <= c;
 y <= M + N;
 END PROCESS;

+

c

b

c

z

+

b

y

“if” statements

• Used only within procedures
• Conditions might overlap
• Processed sequentially and thus implies priority (statements within

first true condition will be executed)
• Instead of an “else” clause a default statement may be used before “if

– elsif” statement (as shown in above example)
• All cases should be covered in order to avoid latch inference

z <= a;

IF (x = “1111”) THEN

 Z <= B;

ELSIF (x > “1000”) THEN

 z <= c;

END IF;

IF (x = “1111”) THEN

 z <= b;

ELSIF (x > “1000”) THEN

 z <= c;

ELSE

 z <= a;

END IF;

“case” statements

• Used only within procedures
• case options must not overlap
• All choice options have to be covered
• All branches equal in priority
• “when others” covers all remaining choice

options

CASE x IS

 WHEN “0000” => z <= a;

 WHEN “0111” | “1001” => z <= b;

 WHEN OTHERS => z <= 0;

END CASE;

Example FSM

entity divby5 is port (

x, clk : in std_logic;

y : out std_logic;

end divby5

• This is a simple FSM to illustrate
good design practice

• It is a Mealy machine

FSM (in VHDL)
• architecture state_machine of divby5 is
• type StateType is (state0, state1, state2, state3,

state4);
• signal p_s, n_s : StateType;
• begin
• fsm: process(p_s,x)
• begin
• case p_s is
• when state0 => y <= '0';
• if x = '1' then
• n_s <= state1;
• else
• n_s <= state0;
• end if;
• when state1 => y <= '0';
• if x = '1' then
• n_s <= state3;
• else
• n_s <= state2;
• end if;
• when state2 =>
• if x = '1' then
• n_s <= state0;
• y <= '1';
• else
• n_s <= state4;
• y <= '0';
• end if;

• when state3 => y <= '1';
• if x='1' then
• n_s <= state2;
• else
• n_s <= state1;
• end if;
• when state4 => y <= '1';
• if x = '1' then
• n_s <= state4;
• else
• n_s <= state3;
• end if;

 -- avoid trap states
• when others => n_s <= state0;

end case
• end process fsm;

• state_clocked : process(clk)
• begin
• if rising_edge(clk) then
• p_s <= n_s;
• end if;
• end process state_clocked;
• end architecture state machine;

Real Student Design Pitfalls

• A summary of some design styles that
were used in past student projects,
which caused unexpected behavior
or other side effects

No clock edge detection:

• backend: process (present_state, clock) is
• begin
• case present_state is
• --STATE S1-- Reset State
• when s1 =>
• scroll_internal <= '0';
• backend_reset <= '1';
• if (reset = '0' and rdempty = '0') then
• next_state <= s10;
• else

• next_state <= s1;
• -- next_state <= s1;
• end if;

•
•
•

Process is triggered for both falling and rising edges of “clock”

Sensitivity list issues:
• seq1: PROCESS (present_state) IS
• BEGIN
• case present_state is
• when s0 =>
• wr_req <= '0';
• grn_led <= '0';
• red_led <= '1';
• frontend_reset <= '1';
• if start = '1' then
• next_state <= s1;
• else
• next_state <= s0;
• end if;

• when s1 =>
•
•
•

Incomplete sensitivity lists can lead to simulation-synthesis mismatches

Redundant use of Reset in combinational process:
• control_reg: process(reset, clk_50)
• begin
• if(reset = '0') then
• state <= IDLE;
• next_addr <= "00000";
• fifo_wr_req <= '0';
• else
• if(rising_edge(clk_50)) then
• if(fifo_full = '0') then
• state <= next_state;
• next_addr <= next_addr - '1';
• fifo_wr_req <= '1';
• end if; end if; end if;
• end process;
•
• get_next_state: process(reset, start, state)
• begin
• case state is
• when IDLE =>
• if(start = '0') then
• next_state <= ENABLED;
• else next_state <= IDLE;
• end if;
• when ENABLED =>
• if(reset = '0') then
• next_state <= IDLE;
• else next_state <= ENABLED;
• end if;
• end case;
• end process;

Usually it is a good practice
to use reset only in sequential
processes. In this example
the use of reset in the
combinational process is
redundant because the state
is reset in the sequential
process

fifo_wr_req handling

• control_reg: process(reset, clk_50)
• begin
• if(reset = '0') then
• state <= IDLE;
• next_addr <= "00000";
• fifo_wr_req <= '0';
• else
• if(rising_edge(clk_50)) then
• if(fifo_full = '0') then
• state <= next_state;
• next_addr <= next_addr - '1';
• fifo_wr_req <= '1';
• end if;
• end if;
• end if;
• end process;

This is a functionality issue. fifo_wr_req is only set during normal operation
(without considering reset) without any provision for clearing it.

Enumeration of all counter states:
• get_next_state: process (fifo_full, reset, start, state)
• begin
• case state is
• when IDLE =>
• if (start = '0') then next_state <= S31;
• else next_state <= IDLE;
• end if;
• when S31 =>
• if (reset = '0') then next_state <= IDLE;
• elsif (fifo_full = '0') then next_state <= S30;
• else next_state <= S31;
• end if;
• when S30 =>
• if (reset = '0') then next_state <= IDLE;
• elsif (fifo_full = '0') then next_state <= S29;
• else next_state <= S30;
• end if;
• when S29 =>
• if (reset = '0') then next_state <= IDLE;
• elsif (fifo_full = '0') then next_state <= S28;
• else next_state <= S29;
• end if;
• when S28 =>
• if (reset = '0') then next_state <= IDLE;
• elsif (fifo_full = '0') then next_state <= S27;
• else next_state <= S28;
• end if;

•
•
•

A unnecessary complex FSM is implemented where every count value is
treated as a separate state

Redundant Sensitivity signals

• process(C, reset,start,input)
• begin
• if reset='1' then
• tmp<=(others =>'0');
• elsif C='0' and C'event then
• if start='1' then
• tmp <= tmp(27 downto 0)& input(3 downto 0);
• end if;
• end if;

In a sequential process like this (C seems to be a clock signal) it is redundant
to list any other signals in the sensitivity list apart from the register clock and
the asynchronous reset. The value changes of any other signals will not have
an effect, unless there is a clock edge present.

Clock detection in case clause:
• process(clk50,present_state,counter,wr_full)
• begin
• case present_state is
• when idle =>
• temp_addr<=(others =>'0');
•
• when active0 =>
• if clk50='0' and clk50'event then
• if wr_full='0' then
• temp_addr<=temp_addr-1;
• end if;
• end if;
•
• when others =>
• null;
•
• end case;
•
• end process;

Not very clean way of describing a state machine. It seems as if the FSM uses
the clock for its synchronization only during the “active0” state. Synthesis tools
will probably produce strange logic for such descriptions

Other Design Pitfalls

• Making things too complex
– Make simple FSMs
– Separate sequential and combinational logic
– No combinational loops

• Be careful when dealing with multiple clocks
– Multiple clocks can create bugs that only appear some of the

time
– Worse yet, can create bugs that only appear in hardware vs.

being testable in simulation
– Need to handle the hand-shaking well

• Can use FIFOs
• Or multiple stages of registers with proper enable signals

Other Design Pitfalls (cont’)

• INOUT Ports
– If you have a port of type INOUT in a module, you need to explicitly drive it

to high impedance “z” when the module is not driving the port.

– Simply failing to specify an output value for the port isn’t good enough, you
can get flaky signal

– Example
• Case (enable) is

when “1” => wr <= data;
when “0” => wr <= “z”;

• Gated clocks
– Avoid multiple clocks if possible

– Never put any logic between the clock and the clock pin of a module

	Design using VHDL
	HDL Characteristics
	Slide 3
	Slide 4
	Slide 5
	Combinational vs Sequential Process
	Slide 7
	Slide 8
	Signal vs Variable Assignment
	Página 10
	Slide 11
	Slide 12
	Example FSM
	FSM (in VHDL)
	Real Student Design Pitfalls
	No clock edge detection:
	Sensitivity list issues:
	Redundant use of Reset in combinational process:
	fifo_wr_req handling
	Enumeration of all counter states:
	Redundant Sensitivity signals
	Clock detection in case clause:
	Other Design Pitfalls
	Other Design Pitfalls (cont’)

