
 The Microelectronics
 Training
 Center

The MTC is an initiative within the INVOMEC division

 Industrialization &
 Training in
 Microelectronics

Lab-exerc ise

This material was developed with support of the European Social Fund.
ESF: Prevent and combat unemployment by promoting employability,

entrepreneurship, adaptability and equal opportunities between women and men, and
by investment in people.

http://www.esf-agentschap.be

For Academic Use Only

IMEC2005 www.mtc-online.be

Lab 4:
B u i l d an d s i m u l at e a c o m p l e t e

s y s t e m i n c l u d i n g a U ar t

Cluster: Cluster1
Module: Module6a

Target group: Students

Version: 1.1
Date: 13/02/07
Author: Geert Vanwijnsberghe

The Microelectronics Training Center

For Academic Use Only

Lab4Mod6aV1.1_E.doc www.mtc-online.be 2/10

 � � �� � ��� � � 	 � �

Before implementing our system in the FPGA on the XUP board we will add an interface to a
uart. This will allow us to set up a serial communication between the PC and our microprocessor.
To demonstrate the correct behavior of the complete system we will write a small assembler
program that stores the characters being sent by the PC until a character 0 is received. After this
the characters are sent back by the microprocessor to the PC in a reverse order.
We will not reinvent the uart but we will use a miniUart core from www.OpenCores.Org.
This core was however slightly modified in order to support a baud rate of 115200. To make the
assembly code very simple an extra interface unit between the cpu and the miniUart has been
developed allowing us to send bytes and receive bytes from the miniUart without checking its
status flags first.
The VHDL memory model we used up to now is completely technology independent. In this
module we will generate a new memory by the core generator (COREGEN) of Xilinx that maps
our memory on the available block ram in the VirtexII-pro FPGA.
Before implementing this complete system we will simulate and verify this.
 � � � � 	�� �

After completing this module, you should be able to:

• include existing IPs in a system
• use the CoreGen of Xilinx
• write a small assembly program
• simulate a complete system

 � � � � � �� �� � �� � �� � �

• Basic VHDL knowledge
• VAS assembler

 � � � � � 	� 	 �� � 	 � �

Level:
Duration:
 � �� � �

Folders
• assembler : VAS vhdl files
• system_vhdl : all vhdl files of the system
• simulation : folder where you have to startup the simulation

o compile.do :
• testbench_vhdl :

o uart_fake.vhd
o TB_uart_fake.vhd
o TB_system.vhd

 � � � � �

The next figure shows the complete system that is built in this module.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod6aV1.1_E.doc www.mtc-online.be 3/10

 � � �� � � �

 �� 	�
� �

Have a look at the vhdl code of the MiniUart. You see that it consists of a baud rate generator,
an Rxunit and a Txunit. The baud rate generator has been modified in order to have a baud rate
of 115200 when the clock is driven with 50 MHz. The specification of the MiniUart is:

• 2 bit address for reading :
o 00 : put received byte on DataOut
o 01 : put status info on DataOut

• status info
o bit 7-4 : unused
o bit 3 : Transmit buffer empty
o bit 2 : Data available from the receiver
o bit 1 : Frame error in received data
o bit 0 : Output error

• synchronous wrt rising edge of SysClk
• asserting CS_N and RD_N will capture the received data and reset the Data available

flag.
• asserting CS_N and WR_N will start the transmission of the byte on DataIn if the

transmit buffer is empty.
 � ��
� �

This is an extra module in hardware that could also have been implemented in software. The
main functionality of this unit is that the microprocessor can read or write a byte to it without
checking the internal flags of the miniUart. This unit will wait until the Data available flag is
asserted before reading the received byte and it will wait until the Transmit buffer empty flag is
set before writing a new byte to the miniUart. You should have a look at the code and you will
see that is consists of a simple FSM. Since only 1 device is attached to the CPU the DeviceID is
not used.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod6aV1.1_E.doc www.mtc-online.be 4/10

� �� � �� ���

As you can see in figure 1 also two small units were added to the system. The ROC (reset on
configuration) is a module that generates a reset pulse after the FPGA has been configured.
This means that the system will automatically be reset and the external reset is actually only
needed to reset the system during operation.
The DCM (Digital clock manager) is a unit that can divide and/or multiply its clock input. This
instantiation generates a 50MHz clock out of the 100 MHz clock.
 � � � �� � � � � � � � �

The next code does the string inversion. Characters (bytes) are read from device 0 (D0 =
IO2Uart) and pushed on the stack until character “0” is received. After this the characters are
popped from the stack again and send to device 0.
. CHAR_0 #48;

LDM CHAR_0 R1;

$READCHAR:
I NB D0 R0;
CMP R0 R1;
BEQ WRI TEBACK;
PSH R0;
I NC R2;
BRA READCHAR;

$WRI TEBACK:
POP R0;
OUB D0 R0;
DEC R2;
BGT WRI TEBACK;
END;

Use module_5c to translate this assembler code into a ram.coe file (Memory Coefficients file)
This file is used by the Xilinx CoreGen to generate the necessary Block RAM modules and
initialize their contents. �

�� !" # $%& '(�) (*+ ,� ! & -� . & ! * -/ , * * 0 , * *21 *& + 31 # $! (! 4� (! / � . & $� . 5 , (. - $!

& % + . 5 * % � -6 % $ $!) ! - ! (%7 8& ! #! & 9 * * & ! � 4 * 5& !:� , ! 5& % + ;< & % + = >. & ! ! & , * *? 4 * 5& ! 6 � (@1 *& & ! + A 5 ! (

 � � 	 � �� � B � � �� � C �� �

Start the Xilinx CORE Generator.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod6aV1.1_E.doc www.mtc-online.be 5/10

1. Select : Create new project

Specify a new non existing folder and a project name (eg. coregen) �

 -� ! " & ' ! 7 % 4/ * 4� 5 , ! (�7 � (!) ! - � % - / � . (+ � ,. 5 !
�

� * 4� 5 , ! (- ! � � $! 4� 5 , ! (&

*& & ! + A 5 ! (�� & / & ! +
�

< $, 5
�

 ! & A ! -7 $
�

< $, * - , & % + . 5 * % � -21

2. Specify Family, Device and Package

The Microelectronics Training Center

For Academic Use Only

Lab4Mod6aV1.1_E.doc www.mtc-online.be 6/10

3. In the Select Core Type window, select Memories & Storage Elements � RAMs &

ROMs � Single Port Block Memory v6.2 and double click.

4. The Single Port Block Memory window is displayed. In the Memory Size field, change
Width to 32 and Depth to 4096. Click Next after doing this.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod6aV1.1_E.doc www.mtc-online.be 7/10

5. In the next window, check Handshaking Pins in the Design Options field. Click Next.

6. Leave the options in the next window unchanged. Proceed to the next window by clicking
Next.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod6aV1.1_E.doc www.mtc-online.be 8/10

7. In this window, check Load Init File in the Initial Contents field. Cick the Load File

button and browse to the lab directory. Choose r am. coe(=out put of VAS
assembl er) and click Open. The file name and path are displayed in black font. In case
of invalid coefficient files, the name and path are red.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod6aV1.1_E.doc www.mtc-online.be 9/10

8. Click Generate. CoreGen starts generating the Block RAM. When finished, an info
message like the one shown below is displayed.

Successf ul l y gener at ed mi cr o6_r am.

9. Close the CORE Generator

The following files were created:

micro6_ram.edn:
 Electronic Data Netlist (EDN) file containing the information
 required to implement the module in a Xilinx FPGA.

micro6_ram.mif:
 Memory Initialization File which is automatically generated by the
 CORE Generator System for some modules when a simulation flow is
 specified. A MIF data file is used to support HDL functional
 simulation of modules which use arrays of values.

micro6_ram.vhd:
 VHDL wrapper file provided to support functional simulation. This
 file contains simulation model customization data that is passed to
 a parameterized simulation model for the core.

micro6_ram.vho:
 VHO template file containing code that can be used as a model for
 instantiating a CORE Generator module in a VHDL design.

micro6_ram.xco:
 CORE Generator input file containing the parameters used to
 regenerate a core.

� � � � � � � B � � � � � � � � �� � ��

In order to simulate the compete system in an easy way a “uart_fake” was developed. The VHDL
entity of this model has 3 generics : Baudrate, IdleBits and TXstring. It also has 3 ports RX
input, TX output and a StartTX input. When StartTX changes from 0 to 1 the TXstring will be sent
out of the TX port with the specified Baudrate. Between the characters a number of extra
stopbits (IdleBits) will be sent. The RX input is continuously monitored and the received
characters are sent to the log window of the simulator.

Have a look at the VHDL description of the testbench (TB_system.vhd).

The Microelectronics Training Center

For Academic Use Only

Lab4Mod6aV1.1_E.doc www.mtc-online.be 10/10

Before starting the simulation you should copy micro6_ram.mif from the coregen folder to your
simulation folder. An alternative is to modify micro6_ram.vhd in the coregen folder.

Start modelsim in your simulation folder.

Modelsim> do compile.do
Modelsim> vsim work.tb_system
Modelsim> run 6 ms

You should get the following output in your transcript window:

………. .
Char r ecei ved i n hex = 20 - -
* * Not e: t r ansmi t of f ake uar t done
Ti me: 3864400 ns I t er at i on: 0 I nst ance: / t b_syst em/ u2
Char r ecei ved i n hex = 6B - - k
Char r ecei ved i n hex = 6A - - j
Char r ecei ved i n hex = 69 - - i
Char r ecei ved i n hex = 6C - - l
Char r ecei ved i n hex = 65 - - e
Char r ecei ved i n hex = 64 - - d
Char r ecei ved i n hex = 6E - - n
Char r ecei ved i n hex = 69 - - i
Char r ecei ved i n hex = 45 –- E

Now you are ready for the next module where you will put this system into the FPGA on the XUP
board.

