Unidades aritméticas y lógicas

DAPA E.T.S.I. Informática Universidad de Sevilla Noviembre, 2015

Jorge Juan <jjchico@dte.us.es> 2010-2015

Esta obra esta sujeta a la Licencia Reconocimiento-CompartirIgual 4.0 Internacional de Creative Commons. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-sa/4.0/ o envíe una carta Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Departamento de Tecnología Electrónica - Universidad de Sevilla

Contenidos

- Introducción
- · Aritmética binaria
- · Circuitos sumadores básicos
- · Sumador de magnitudes
- · Números binarios con signo
- Sumador con signo. Desbordamiento
- Sumador/restador
- ALU

Introducción

- Los circuitos aritméticos hacen operaciones aritméticas sobre datos de n bits: +, -, *, /
- Las operaciones aritméticas son las más importantes en los sistemas digitales (computadores)
- Dos formas de hacer operaciones aritméticas en los computadores:
 - En hardware (mediante circuitos específicos): tradicionalmente sólo para operaciones simples (suma, producto, etc.)
 - En software (mediante programación): tradicionalmente para operaciones complejas (división, funciones trigonométricas, etc.)

Departamento de Tecnología Electrónica - Universidad de Sevilla

Soporte aritmético hardware en ordenadores personales

- 1970-1980 (procesadores de 8 bits)
 - Sólo suma y resta de números enteros.
- 1980-1990 (procesadores de 16 bits)
 - Multiplicadores y divisores
 - Co-procesadores matemáticos como opción
 - Número reales, funciones complejas, etc.
- 1990-2000 (procesadores de 32 bits)
 - Co-procesadores integrados
 - Múltiples unidades de enteros: varios cálculos a la vez
 - Operaciones de soporte multimedia
 - Operaciones para gráficos 2-D (en controladores gráficos)
- 2000- (procesadores de 64 bits)
 - Operaciones matemáticas avanzadas
 - Procesamiento digital, simulación física, etc.
 - Operaciones para gráficos 3D (en controladores gráficos)

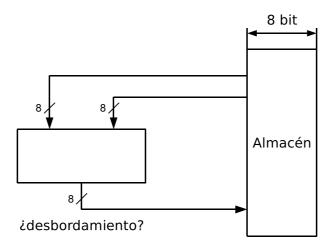
Contenidos

- Introducción
- · Aritmética binaria
- · Circuitos sumadores básicos
- Sumador de magnitudes
- Números binarios con signo
- Sumador con signo. Desbordamiento
- Sumador/restador
- ALU

Departamento de Tecnología Electrónica - Universidad de Sevilla

Aritmética binaria

- Aritmética usada en sistemas digitales (computadores)
- Basada en el sistema de numeración en base 2
- Número fijo de bits



Departamento de Tecnología Electrónica - Universidad de Sevilla

Aritmética binaria

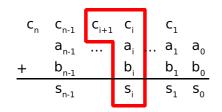
- Ejemplo
 - A = 100110
 - -B = 1101
- Operaciones
 - -A+B
 - A B
 - A * B
 - A/B

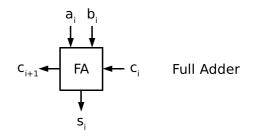
Departamento de Tecnología Electrónica - Universidad de Sevilla

Contenidos

- Introducción
- · Aritmética binaria
- Circuitos sumadores básicos
- Sumador de magnitudes
- Números binarios con signo
- Sumador con signo. Desbordamiento
- Sumador/restador
- ALU

Circuitos sumadores básicos. Sumador completo (*full adder*)

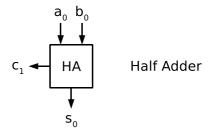




a _i	b_{i}	c _i	C_{i+1}	S _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Departamento de Tecnología Electrónica - Universidad de Sevilla

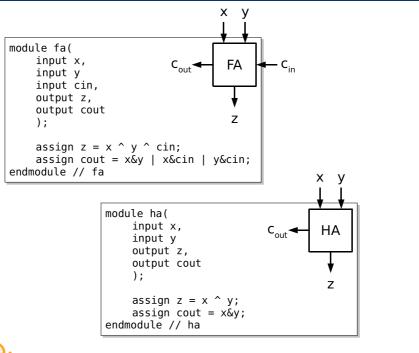
Circuitos sumadores básicos. Semi sumador (*half adder*)



a_0	b _o	$c_{_1}$	S ₀
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\begin{aligned}
s_0 &= a_0 \oplus b_0 \\
c_1 &= a_0 b_0
\end{aligned}$$

FA y HA. Descripciones en Verilog



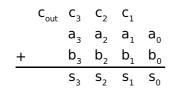
U DTO

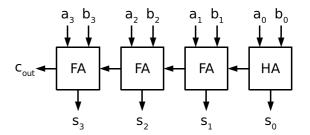
Departamento de Tecnología Electrónica - Universidad de Sevilla

Contenidos

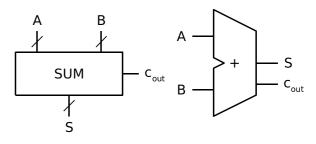
- Introducción
- · Aritmética binaria
- · Circuitos sumadores básicos
- Sumador de magnitudes
- · Números binarios con signo
- · Sumador con signo. Desbordamiento
- Sumador/restador
- ALU

Sumador de magnitudes de n bits





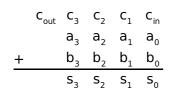
$$S = (A + B) \mod 2^n$$

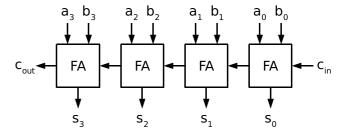


 c_{out} es un indicador de "desbordamiento" ($\emph{overflow}$): el resultado no puede represetnarse con los bits disponibles (n).

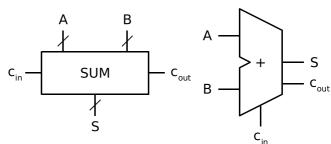
Departamento de Tecnología Electrónica - Universidad de Sevilla

Sumador de magnitudes de n bits con entrada de acarreo



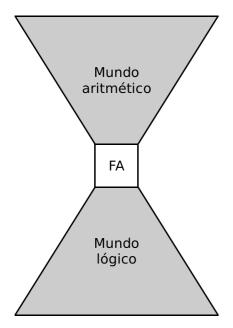


$$S = (A + B + C_{in}) \mod 2^n$$



 $c_{_{in}}$ es útil para conectar varios sumadores y sumar números de más de n bits.

Importancia del sumador completo (FA)



- El sumador completo hace la operación aritmética más básica (sumar 3 bits) usando sólo operadores lógicos.
- "El sumador completo es el punto de encuentro entre el mundo lógico de los sistemas digitales y el mundo aritmético de los computadores" J. Juan

Departamento de Tecnología Electrónica - Universidad de Sevilla

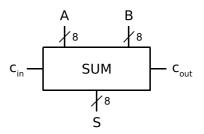
Ejemplos Verilog

Usando sumadores completos (FA)

```
module adder8_fa(
    input [7:0] a,
    input [7:0] b,
    input cin,
    output [7:0] s,
    output cout
    );

    // auxiliary signal
    wire [7:1] c;

    fa fa0 (a[0], b[0], cin, s[0], c[1]);
    fa fa1 (a[1], b[1], c[1], s[1], c[2]);
    fa fa2 (a[2], b[2], c[2], s[2], c[3]);
    fa fa3 (a[3], b[3], c[3], s[3], c[4]);
    fa fa4 (a[4], b[4], c[4], s[4], c[5]);
    fa fa5 (a[5], b[5], c[5], s[5], c[6]);
    fa fa6 (a[6], b[6], c[6], s[6], c[7]);
    fa fa7 (a[7], b[7], c[7], s[7], cout);
endmodule // adder8_fa
```



Usando operadores aritméticos

```
module adder8(
    input [7:0] a,
    input [7:0] b,
    input cin,
    output [7:0] s,
    output cout
    );
    assign
        {cout, s} = a+b+cin;
endmodule // adder8
```


Contenidos

- Introducción
- · Aritmética binaria
- · Circuitos sumadores básicos
- · Sumador de magnitudes
- Números binarios con signo
- · Sumador con signo. Desbordamiento
- Sumador/restador
- ALU

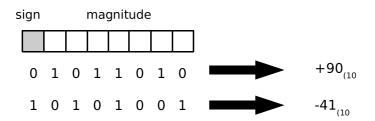
Departamento de Tecnología Electrónica - Universidad de Sevilla

¿Y los números negativos? Números binarios con signo

- En los circuitos digitales no hay "signo", sólo ceros y unos.
- El signo debe codificarse mediante bits junto con la palabra que representa al número.
- Hay varias alternativas para codificar números con signo:
 - Representación signo-magnitud
 - Representación en exceso
 - Representaciones en complemento
- Representación en complemento a 2: usada por la práctica totalidad de computadores actuales para números enteros.

Representación signo-magnitud (s-m) con n bits

- Emplea un bit para el signo y el resto para la magnitud:
 - Signo: 0(+), 1(-)
 - Números representables: 2ⁿ-1
 - Dos representaciones del "0": 00000000, 10000000



$$-(2^{n-1}-1) \le x \le 2^{n-1}-1$$

Departamento de Tecnología Electrónica - Universidad de Sevilla

Representación signo-magnitud con n bits

- Ventajas
 - Fácil de entender
 - Fácil de obtener el opuesto
- Inconvenientes
 - Para operar con números en s-m hay que determinar previamente su signo.
 - La operación a realizar depende del signo de los operandos.
 - Se requieren circuitos complejos para operar con número representados en s-m.
- Usos
 - No usado en la práctica para números enteros.
 - Un concepto similar se usa en la representación de números reales (punto flotante).

Representación en exceso o sesgada

- Dado un número x, y un exceso e, la representación en exceso-e con n bits consiste en representar x mediante la codificación en binario natural de la magnitud x+e con n bits.
- $0 \le x + e < 2^{n}$ $e = 2^{n-1}$ $0 \le x + 2^{n-1} < 2^{n}$
- Para que la representación sea correcta, el resultado debe ser un entero positivo representable con n bits.
- $-2^{n-1} \le x < 2^{n-1}$
- Con n bits, un valor frecuente para el exceso es 2^{n-1} .
 - Aproximadamente mismo número de positivos y negativos
 - El primer bit de la palabra indica el signo: 0negativo, 1-positivo.
- Ej: exceso- 2^{n-1} (n=8 \rightarrow 2^{n-1} =128)
 - $-35_{(10)} \rightarrow -35 + 128 = 93 = 01011101_{\text{exc-}128}$

Departamento de Tecnología Electrónica - Universidad de Sevilla

Representación en exceso o sesgada

- Ventajas
 - Fácil de convertir entre el número y la representación
- Inconvenientes
 - No es fácil obtener el opuesto
 - Se necesitan circuitos complejos para operar con números en rep. en exceso.
- Ejemplo de uso
 - Exponente en la representación de números reales (punto flotante)

Binario	Positivo	Exceso-8
0000	0	-8
0001	1	-7
0010	2	-6
0011	3	-5
0100	4	-4
0101	5	-3
0110	6	-2
0111	7	-1
1000	8	0
1001	9	1
1010	10	2
1011	11	3
1100	12	4
1101	13	5
1110	14	6
1111	15	7

Representaciones en complemento con n bits

- Las representaciones en complemento usan una operación de transformación (complemento) para representar los números negativos.
- La transformación se construye de forma que el bit más significativo (msb) sea 0 para positivos y 1 para negativos.
- Representación de números positivos:
 - Se representan en binario natural
 - El bit más significativo debe ser 0
- Representación de números negativos
 - Se representan haciendo la operación "complemento" al opuesto (positivo)
- Cambio de signo
 - La representación del opuesto de un número se obtiene haciendo la operación "complemento" a la representación del número.
- Operaciones complemento típicas
 - Complemento a dos, complemento a uno, complemento a la base,

Departamento de Tecnología Electrónica - Universidad de Sevilla

Representación en complemento a 1

- Emplea la operación de complemento a 1 (complementar todos los bits).
- El primer bit indica el signo.
- Hace años la emplearon algunos ordenadores, pero hoy está en desuso.
- Ventajas
 - Facilidad de obtener el opuesto
- Inconvenientes
 - Dos representaciones del cero
 - Circuitos más complejos

Binario	Positivo	RC1
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-7
1001	9	-6
1010	10	-5
1011	11	-4
1100	12	-3
1101	13	-2
1110	14	-1
1111	15	0

$$-(2^{n-1}-1) \le x \le 2^{n-1}-1$$

Complemento a 1

- Definición (Operación Complemento a 1 con n bits): Dado un entero positivo x < 2ⁿ, se define el complemento a 1 con n bits de x, C1_n(x), a la magnitud que resulta de complementar todos los bits de x expresado en base 2.
- Definición (Representación en Complemento a 1 con n bits -RC1n-): Dado un entero x tal que -2ⁿ⁻¹ < x < 2ⁿ⁻¹, la representación en complemento a 1 de x con n bits (RC1n) es una palabra binaria de n bits de magnitud RC1_n(x) tal que:

```
- RC1_n(x) = x, si 0 \le x < 2^{n-1}
- RC1_n(x) = C1_n(-x), si -2^{n-1} < x < 0
```

• Definición 2 (Representabilidad en complemento a 1): Si $x<-(2^{n-1}-1)$ o $x>2^{n-1}-1$ se dice que x no es representable en complemento a 1 con n bits.

Departamento de Tecnología Electrónica - Universidad de Sevilla

Representación en complemento a 2

- Aprovecha la "forma" de sumar del sumador de magnitudes
 - $s = (a+b) \mod 2^n$
- Se puede sumar un número negativo utilizando uno positivo:
 - -5+(-3)=2
 - $(5 + 13) \mod 16 = 18 \mod 16 = 2$
- En general, si x<0, basta sustituirlo por x+2ⁿ
- Se imponen límites para distinguir positivos de negativos
 - 0 ... 2^{n-1} -1 → positivos (msb=0) - 2^{n-1} ... 2^n -1 → negativos (msb=1)
- Funciona para todos las combinaciones de a y b, salvo idesbordamiento!

Binario	Positivo	Negativo	RC2
0000	0	0	0
0001	1	-15	1
0010	2	-14	2
0011	3	-13	3
0100	4	-12	4
0101	5	-11	5
0110	6	-10	6
0111	7	-9	7
1000	8	-8	-8
1001	9	-7	-7
1010	10	-6	-6
1011	11	-5	-5
1100	12	-4	-4
1101	13	-3	-3
1110	14	-2	-2
1111	15	-1	-1

Complemento a 2

- Definición (Representación en Complemento a 2 con n bits -RC2n-): Dado un entero x tal que -2ⁿ⁻¹ ≤ x < 2ⁿ⁻¹, la representación en complemento a 2 de x con n bits (RC2n) es una palabra binaria de n bits de magnitud RC2_n(x) tal que:
 - $RC2_n(x) = x$, si $0 \le x < 2^{n-1}$ - $RC2_n(x) = 2^n + x$, si $-2^{n-1} \le x < 0$
- Definición (Representabilidad en complemento a 2): Si $x<-2^{n-1}$ o $x>2^{n-1}-1$ se dice que x no es representable en complemento a 2 con n bits.
- Definición (Operación Complemento a 2 con n bits): Dado un entero positivo x < 2ⁿ, se define el complemento a 2 con n bits de x, C2_n(x), como:

$$- C2_n(x) = 2^n - x$$

- Representación en Complemento a 2 reformulada:
 - $RC2_n(x) = x$, si $0 \le x < 2^{n-1}$
 - $RC2_n(x) = C2_n(-x)$, si $-2^{n-1} \le x < 0$

Departamento de Tecnología Electrónica - Universidad de Sevilla

Complemento a 2

- Teorema (Bit de signo): Si x es representable en complemento a 2 con n bits, el bit más significativo de la representación en complemento a 2 de x es 0 si x ≥ 0, y 1 si x < 0.
- Teorema (Cálculo del opuesto): Dado un entero x representable en complemento a 2 con n bits, la magnitud de la RC2n de -x es el complemento a 2 de la magnitud de la RC2n de x, siempre que -x sea representable en complemento a 2, esto es:
 - $RC2_n(-x) = C2_n(RC2_n(x))$
 - En RC2n el opuesto se calcula aplicando la operación complemento a 2 sobre la representación.

Complemento a 2

- Teorema (Regla de la suma): Dados dos enteros a y b tales que a, b y a+b son representables en complemento a 2 con n bits, la magnitud de la RC2n de a+b se puede calcular como:
 - $RC2_n(a+b) = [RC2_n(a) + RC2_n(b)] \mod 2^n$

Esto es: la RC2n de a+b se obtiene sumando las RC2n de a y de b y despreciando posibles bits de acarreo.

 Corolario: Un sumador de magnitudes de n bits cuyos operandos son las RC2n de a y b produce la RC2n de a+b, siempre que ésta sea representable con n bits.

Departamento de Tecnología Electrónica - Universidad de Sevilla

Complemento a 2

- Definición (Desbordamiento en complemento a 2): Dados dos enteros a y b representables en complemento a 2 con n bits, se dice que la suma de a y b produce desbordamiento en complemento a 2 con n bits si a+b no es representable en complemento a 2 con n bits.
- Corolario (Regla del desbordamiento): Dados dos enteros a y b representables en complemento a 2 con n bits, la suma a+b es representable en complemento a 2 con n bits si y sólo si:
 - a y b tienen distinto signo o al menos uno de ellos es cero, o bien
 - a y b tienen el mismo signo y el resultado de la suma de las RC2n de a y b, módulo 2ⁿ, tiene el mismo bit de signo que las RC2n de a y b.

Complemento a 2 Suma y desbordamiento

$$1100 = -4$$
 $0101 = +5$ $1001 = -7$ $1111 = -1$ $0100 = +4$ $1010 = -6$ $--- 1001 = -7$ $10011 = +3$

Departamento de Tecnología Electrónica - Universidad de Sevilla

Complemento a 2 Relación con el complemento a 1

- Teorema: el complemento a 1 con n bits de x puede calcularse como:
 - $-C1_n(x) = 2^n x 1$
- Relación:
 - $C1_n(x) = C2_n(x) 1$
 - $C2_n(x) = C1_n(x) + 1$
- Regla 1
 - El C2_n(x) puede obtenerse complementando todos los bits de x y sumando 1 al resultado.
- Regla 2
 - El C2_n(x) puede obtenerse conservando todos los bits de x que sean '0' comenzando por el menos significativo hasta el primer '1' inclusive y complementando el resto de bits.

Complemento a 2 Ejemplos

- Ejemplo 1: representar las siguientes cantidades en C2 con 8 bits.
 - 32, -13, 115, -140, 128, -128
- Ejemplo 2: obtener el número mínimo de bits necesarios para representar las cantidades anteriores en C2.
- Ejemplo 3: calcular el valor decimal de las siguientes representaciones en C2.
 - 01001100, 11110000

Departamento de Tecnología Electrónica - Universidad de Sevilla

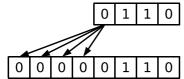
Complemento a 2 Extensión del signo

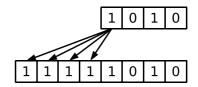
Teorema (Extensión del signo en complemento a 2): Sea x un entero representable en complemento a 2 y RC2_n(x) la magnitud de su representación en complemento a 2 con n bits y s el bit de signo de dicha magnitud. Se cumple que:

$$- RC2_{n+1}(x) = s 2^n + RC2_n(x)$$

Esto es, la representación en complemento a 2 de \times con n+1 bits coincide con la representación con n bits añadiendo un bit de signo igual al bit de signo de la representación con n bits.

 Corolario: Un entero x representable en complemento a 2 con n bits será representable en complemento a 2 con n-1 bits si los dos bits más significativos de RC2n(x) son iguales (el signo no cambia al reducir el número de bits).





Complemento a 2 C2 como código pesado

Teorema: Sea x un entero representable en complemento a 2 con n bits, RC2_n(x) la magnitud de su representación en complemento a 2 con n bits formada por las cifras binarias {x₀,x₁,...,x_{n-1}}. Se tiene que:

$$X = -2^{n-1}X_{n-1} + 2^{n-2}X_{n-2} + ... + 2X_1 + X_0$$

-2 ⁷									
-128	64	32	16	8	4	2	1		
1	0	1	1	0	1	1	0		-74
1	1	1	1	1	1	1	0		-2
0	1	0	0	0	0	0	1		65

Departamento de Tecnología Electrónica - Universidad de Sevilla

Resumen de números con signo

Х	S-M	Exc-2 ⁿ⁻¹	RC1	RC2
-8	-	0000	-	1000
-7	1111	0001	1000	1001
-6	1110	0010	1001	1010
-5	1101	0011	1010	1011
-4	1100	0100	1011	1100
-3	1011	0101	1100	1101
-2	1010	0110	1101	1110
-1	1001	0111	1110	1111
0	0000/1000	1000	0000/1111	0000
1	0001	1001	0001	0001
2	0010	1010	0010	0010
3	0011	1011	0011	0011
4	0100	1100	0100	0100
5	0101	1101	0101	0101
6	0110	1110	0110	0110
7	0111	1111	0111	0111

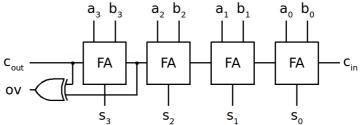
Contenidos

- Introducción
- · Aritmética binaria
- · Circuitos sumadores básicos
- · Sumador de magnitudes
- Números binarios con signo
- · Sumador con signo. Desbordamiento
- Sumador/restador
- ALU

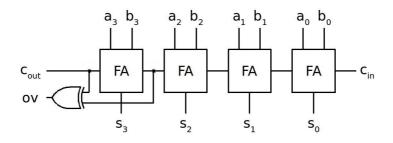
Departamento de Tecnología Electrónica - Universidad de Sevilla

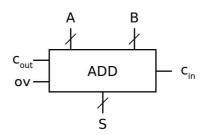
Sumador con signo: desbordamiento

- · Mismo sumador que para magnitudes.
- El bit de acarreo NO indica desbordamiento en C2.
- Se necesita un indicador de desbordamiento para la suma en C2. Basado en la regla del desbordamiento.
 - Signo de operandos y resultado



Sumador con signo: desbordamiento





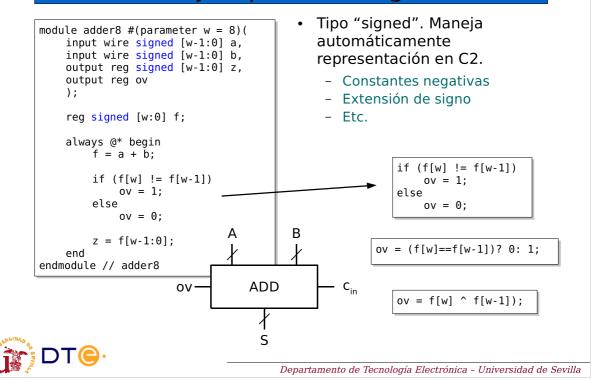
Departamento de Tecnología Electrónica - Universidad de Sevilla

Departamento de Tecnología Electrónica - Universidad de Sevilla

Sumador con/sin signo Ejemplos Verilog

```
В
                                                          Α
         Usando sumadores completos
module adder8 fa(
     input [7:0] a, input [7:0] b,
                                                                                   \mathbf{C}_{\mathrm{in}}
                                                               ADD
                                               ov-
     input cin,
     output [7:0] s,
                                                                 1
     output cout, ov
                                                                 S
                                                                       Usando operadores aritméticos
     // auxiliary signal
     wire [7:1] c;
                                                                 module adder8(
                                                                       input [7:0] a,
     fa fa0 (a[0], b[0], cin, s[0], c[1]);
                                                                       input [7:0] b,
     fa fal (a[1], b[1], c[1], s[1], c[2]);
fa fa2 (a[2], b[2], c[2], s[2], c[3]);
fa fa3 (a[3], b[3], c[3], s[3], c[4]);
                                                                       input cin,
                                                                       output [7:0] s,
                                                                       output cout, ov
     fa fa4 (a[4], b[4], c[4], s[4], c[5]);
     fa fa5 (a[5], b[5], c[5], s[5], c[6]);
fa fa6 (a[6], b[6], c[6], s[6], c[7]);
fa fa7 (a[7], b[7], c[7], s[7], cout);
                                                                       assign {cout, s} = a+b+cin;
                                                                       assign ov = \sim a[7] \& \sim b[7] \& s[7]
     assign ov = c[7] ^ cout;
                                                                                      | a[7] & b[7] & ~s[7];
endmodule // adder8 fa
                                                                 endmodule // adder8
```

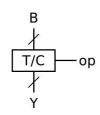
Sumador con signo Ejemplos Verilog

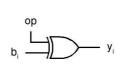


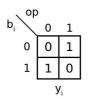
Contenidos

- Introducción
- · Aritmética binaria
- Circuitos sumadores básicos
- · Sumador de magnitudes
- · Números binarios con signo
- Sumador con signo. Desbordamiento
- Sumador/restador
- ALU

Sumador/restador Bloque transfiere/complementa







$$Y = \overline{B} = C1_n(B) = 2^n-B-1 = C2_n(B)-1$$

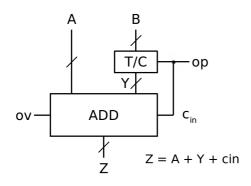
Si B=RC2_n(b), entonces:

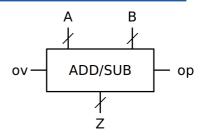
$$Y+1 = C2_n(B) = RC2_n(-b)$$

Departamento de Tecnología Electrónica - Universidad de Sevilla

Sumador/restador

- Sumador/restador en complemento a 2
 - A=RC2n(a), B=RC2n(b), Z=RC2n(z)
 - ov: salida de desbordamiento (z no representable en C2)



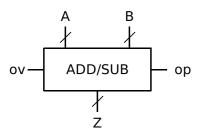


ор	Z	Z
0	a + b	A + B
1	a - b	A+C2(B)

ор	Y	C _{in}	Z	Z
0	В	0	A + B	a + b
1	\overline{B}	1	A+ <u>B</u> +1	a - b

$$\overline{B}+1 = C1_n(B)+1 = C2_n(B)$$

Sumador/restador Descripción Verilog



```
module addsub \#(parameter w = 8)(
    input wire signed [w-1:0] a,
    input wire signed [w-1:0] b,
    input wire op,
    output reg signed [w-1:0] z,
    output reg ov
    );
    reg signed [w:0] f;
    always @* begin
        case (op)
          0:
            f = a + b;
          default:
            f = a - b;
        endcase
        ov = f[w] ^ f[w-1]);
        z = f[w-1:0];
    end
endmodule // addsub
```

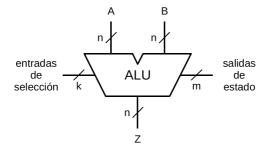

Departamento de Tecnología Electrónica - Universidad de Sevilla

Contenidos

- Introducción
- · Aritmética binaria
- Circuitos sumadores básicos
- · Sumador de magnitudes
- · Números binarios con signo
- Sumador con signo. Desbordamiento
- Sumador/restador
- · ALU

ALU

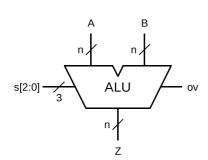
- Conjunto de operaciones de procesado de datos agrupadas en un mismo dispositivo
 - Operaciones lógicas
 - Operaciones aritméticas
- Uno de los componentes más importantes del computador



Departamento de Tecnología Electrónica - Universidad de Sevilla

ALU de ejemplo

- Unidad Lógico-Aritmética en complemento a 2
 - A = RC2n(a), B = RC2n(b), Z = RC2n(z)
 - ov: salida de desbordamiento (z no representable en C2)



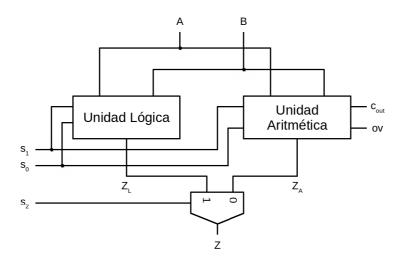
$S_2S_1S_0$	Z	Z	
000	a + b	A + B)
001	a - b	A+C2(B)	Aritméticas ($s_2=0$)
010	a + 1	A + 1	Antimeticas (s ₂ =0)
011	a - 1	A+2 ⁿ -1	J
100	A AI	ND B	
101	АО	R B	Lógicas (s,=1)
110	A XC	OR B	Logicas (S ₂ -1)
111	NO	ТА	J

ALU Estrategia de diseño

- iDivide y vencerás! (otra vez)
 - Diseñar una unidad lógica y una unidad aritmética independientes controladas por s₂ (¿multiplexor?)
- Unidad lógica
 - Seleccionar la operación adecuada con s_1 y s_0 (¿multiplexor?)
- · Unidad aritmética
 - Usar un sumador de magnitudes como base.
 - Calcular las entradas del sumador (B y Cin) para obtener el resultado deseado.
 - Seleccionar los valores apropiados de B y Cin con s₁ y s₀
 (¿multiplexor?)

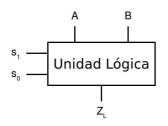
Departamento de Tecnología Electrónica - Universidad de Sevilla

ALU Diseño

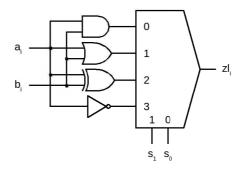


Departamento de Tecnología Electrónica - Universidad de Sevilla

ALU Diseño de la unidad lógica



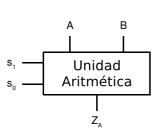
S ₁ S ₀	zl	zl _i
00	a AND b	a _i AND b _i
01	a OR \overline{b}	a_i OR $\overline{b_i}$
10	a XOR b	a _i XOR b _i
11	NOT a	NOT a _i

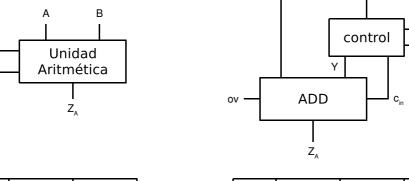


Departamento de Tecnología Electrónica - Universidad de Sevilla

В

ALU Diseño de la unidad aritmética



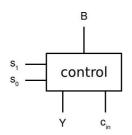


S_1S_0	Z _A	Z_A
00	a + b	A + B
01	a – b	$A + \overline{B} + 1$
10	a + 1	A + 1
11	a - 1	A + 2 ⁿ -1

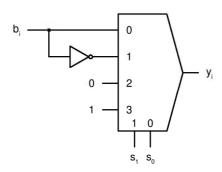
$Z_A = A + Y + C_{in}$
<u> </u>

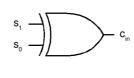
S_1S_0	Y	y _i	C _{in}
00	В	b _i	0
01	B	\overline{b}_{i}	1
10	0	0	1
11	2 ⁿ -1	1	0

ALU Diseño de la unidad aritmética



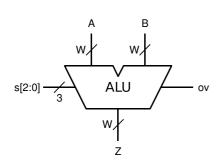
S ₁ S ₀	у	y _i	C _{in}
00	b	b _i	0
01	b	\overline{b}_{i}	1
10	0	0	1
11	2 ⁿ -1	1	0





Departamento de Tecnología Electrónica - Universidad de Sevilla

ALU Descripción Verilog



```
module alu #(parameter w = 8)(
  input signed [w-1:0] a,
  input signed [w-1:0] b,
  input [2:0] s,
  output reg signed [w-1:0] z,
  output reg ov
  );

reg signed [w:0] f;
```

```
always @* begin
    ov = 0;
    if (f[2] == 0) begin // Arithmetic
       case (f[1:0])
         2'b00: f = a + b;
         2'b01: f = a - b;
         2'b10: f = a + 1;
2'b11: f = a - 1;
         2'b11:
       endcase
       ov = (f[w] == f[w-1])? 0: 1;
       z = f[w-1:0];
    end else
                                // Logic
       case (s[1:0])
         2'b00: z = a & b;
2'b01: z = a | b;
2'b10: z = a ^ b;
2'b11: z = ~a;
       endcase
  end // always
endmodule // alu
```

