
MIDAS: An inexpensive, real-time, scalable, network-based Data Acquisition System

Antonio Barbancho and José Antonio Pérez
Departamento de Tecnología Electrónica. Universidad de Sevilla. Escuela Universitaria Politécnica de Sevilla. C/ Vir-

gen de África, 7. 41011 Sevilla. España. Tlf: (34) 5 455 28 37. Fax: (34) 5 455 28 33. Email ayboc@cica.es

Departamento de Lenguajes y Sistemas Informáticos. Universidad de Sevilla. Facultad de Informática y Estadística.
Avenida de la Reina Mercedes, s/n. 41012 Sevilla. España. Tlf: (34) 5 455 27 67. Email: jperez@lsi.us.es.

Abstract: At this paper, we present MIDAS. MIDAS is a low-cost, low-power, distributed data
acquisition system. MIDAS is based on a bus-like network and a multitasking real-time master. Sensors
are connected as slaves and are fully controlled by the network master. Since some prototypes have
already been built, we expose practical results on costs and performance obtained.

Résumé: Dans cette communication, nous présentons MIDAS. MIDAS c’est un système distribué
d’acquisition de données à bas consommation d’énergie et bas coût. MIDAS utilise une architecture de
bus, avec protocole maître-esclave et logiciel multitache temps réel. Les capteurs sont connectés comme
esclaves et sont contrôlés par le maître du réseau. Des prototypes ont déjà étés construits, et ici nous
présentons des résultats pratiques avec des considérations sur les coûts et les performances obtenues.

1. Introduction

Data acquisition systems are becoming more and more
sophisticated, having to fulfil harder requirements about
power consumption, cost, scalability and flexibility.

A modern general-purpose data acquisition system
should be able to:

• manage a large number of sensors;
• manage very different nature sensors;
• manage long distance located sensors;
• make easy installation and maintenance tasks;
• operate in stand-alone environment, battery-

powered;
• store large amount of data;
• perform real time actuation;

all of this, of course, at the lowest cost.

In this paper, we describe MIDAS, a MultIpurpose Data
Acquisition System, which complies with all these re-
quirements. MIDAS is a network-based, real-time, low-
power, low-cost system. Furthermore, MIDAS is an
open system, which can grow up as much as needed. Its
most relevant features are:

• Up to 256 elements (sensors, actuators or any
other device) can be addressed simultaneously.

• All devices are plugged into an 8-wire bus-based
network. So only eight parallel wires are needed
to power and control all devices, making easy
installation and maintenance.

• Low supply current. This enables to power it
from a battery pack with solar panel.

• All sensors have a smart interface, allowing uni-
form treatment. This simplifies management of
different nature sensors.

• All devices are plug and play. Warm plugging is
allowed.

• Real time Operating System.

• Flexible programming.

MIDAS is not a commercial system, but it has been de-
signed to be used as a prototype for several commercial
systems actually under development.

In section 2 we describe the architectural basics of MI-
DAS. Section 3 shows hardware and software imple-
mentation issues, and section 4 discusses some
experimental results obtained from first prototypes. Fi-
nally, conclusion and actual investigation lines are pre-
sented in section 5.

2. System architecture

MIDAS is based on a real-time bus-like network. Devic-
es connected to this network can be classified as masters
and slaves. Only one master is currently allowed in the
network. The master device configures and assigns net-
work addresses to slaves. The master acts as datalogger,
governing the system operation (see Fig. 1).

Fig. 1: System architecture

MASTER SLAVE

SLAVE SLAVE

...

...

All other devices in the network (intelligent sensors,
data storage systems, signal conditioning, user interfac-
es, and so on) are slaves. All slaves must show a stan-
dard interface to the network. If needed, any traditional
sensor can be connected to the network through an inter-
face module, allowing low-cost transition from tradi-
tional systems.

2.1. Network Architecture

MIDAS network model is based on a simplified OSI
model [2] and lacks of network to presentation layers.
This means, it only has physical, data link and applica-
tion layers.

The Physical Layer is concerned with transmitting raw
bits over the communication channel [3]. In order to
make a low cost design, our design is based on RS-485
and SPI (Serial Peripheral Interface) standards. The
communication channel is a bus that carries three signal
lines (CLK for clock, DATA for data and SS for slave
selection) and two power lines (V+ and ground). Since
RS-485 protocol is used, each line is composed of two
wires (balanced transmission). This makes possible
communication along medium distances (4000 feet)
without line repeaters. The communication is synchro-
nous and leaded by the master device. Transmission
speed is controlled by CLK and may be up to 10 Mbps.
Although RS-485 specifies that up to 32 loads1 on the
bus, our design uses 1/8-unit-load transceivers, allowing
256 devices on the bus.

The main task of the Data Link Layer is to take raw
transmission facility and transform it into a line that ap-
pears free of transmission errors to application layer [3].
It is also responsible for the identification of the slave.
As all devices share the bus, there must be a unique net-
work address for each device. A detailed description of
the protocol of this layer would exceed this paper pur-
poses.

The Application Layer is a collection of small protocols
providing specific solutions. Examples are file transfer,
remote operation and slave management. The later deals
with the automatic identification and configuration
(Plug'n'Play) and network address assignation.

2.2. Master Architecture

The master is responsible to perform the following
tasks:

• Manage the application level network protocol,
as described in section 2.1.

• Perform the acquisition process. This is done by
executing an user program, as we will describe
later.

From the hardware point of view, the master architec-
ture consists on a CPU microcontroller, a network inter-
face, a serial RS-232 interface, a real-time clock and

programmable NMI generator, a ROM memory contain-
ing embedded code and a nonvolatile SRAM memory
bank, as described in Fig. 2.

The purpose of the RAM bank is for device internal use
or for data storage. Data storage may be increased via an
external device connected to the network, allowing mas-
sive storage.

The serial RS-232 interface is conceived for facilitating
downloading and uploading programs, debugging and
frequent tasks like data retrieving or system monitoring.
Although a specialized device connected to the network
can be used for this purpose, having this facility inte-
grated into the master has two main advantages:

• The master is self-contained. No other device is
needed to control the system. You do not need
an additional device to perform elementary
tasks. This reduces the cost of a minimum sys-
tem.

• It reduces data traffic in the network when per-
forming such tasks, reducing congestion risk.

Furthermore, while developing MIDAS first prototypes,
this serial interface was very useful for debugging and
profiling tasks.

From the software point of view, the master contains
four independent modules:

• Real-time kernel, which implements multitask-
ing and real-time scheduling issues. This kernel
serves as basic support for all other software
facilities, as described in section 3.2.

• Network protocols for physical and data-link
layers, and master management protocol for
application layer.

• User's interface for RS-232 serial link. Simple
Xon-Xoff protocol is used to manage communi-
cation.

• User's program interpreting machine. The mas-
ter executes an user-supplied program which
executes on an emulated virtual data acquisition
machine.

Software aspects are detailed in section 3.2.

1. A load is the input impedance of a transceiver,
and is 12KΩ in the standard.

NMI
Generator

R.T.
Clock

Serial
Interface

ROM

SRAM

µP
Network
Interface

RS-232

Network

Fig. 2: Master architecture

2.3. Slave Architecture

Since the master has not input/output capability (except
for the network and serial links), it has to reside on the
sensor end. Therefore slave architecture is very applica-
tion dependent. Nevertheless, it always must include an
interface part to the network. This interface has been de-
signed to be simple, allowing low cost and low power.

3. Implementation issues

3.1. Hardware issues

Two types of cables can be present on a bus: 10-wire
IDC ribbon cable for short distances, and 4 twisted pair
24 AWG cable for long distances and special protection.
A special connection module has been designed to con-
nect both.

The master device is based on the Hitachi H8/500 mi-
crocontroller family. It was selected because of its 16
bits nature, low power, rich set of peripherals and low
cost. The first prototypes use the H8/520, a small 64 pin
PLCC housed, 32 Kb OTP EPROM and 1 Kb RAM mi-
crocontroller. A pair of USART on-chip peripherals al-
lows connection to an RS-232 port and to the network.

A bank of SRAM is also available on the master, allow-
ing up to 512 Kb of local, fast, nonvolatile memory. A
lithium battery must be internally or externally connect-
ed to power SRAM and real- time clock in the absence
of main power.

In order to increase the number of devices that can be
present on the bus, 1/8-unit-load RS-485 transceivers
are used, allowing up to 256 devices. The MAX3082
was selected due their low power, low cost and fail-safe
features. This make possible turning off all drivers to
save power when the bus is idle. When a receiver 'sees'
a floating line, puts its output in a known state (high).

The whole master is enclosed in a small DIN rail mount
enclosure.

Slave architecture is application dependent as noted in
section 2.3. The network interface and other common
tasks rely on a Zilog Z8 microcontroller [5]. A Z86E06
device was chosen due to its very low cost, very low
power, low pin count and SPI capabilities. A unique fea-
ture of this device is its ability to act as SPI slave in a
compare mode. In this mode, the microntroller is in
standby mode, drawing a few microamperes. The SPI
peripheral is controlled externally by the master. A
transaction begins with the assertion of SS line. Then
eight bits are received via the DATA line. This byte is
compared with a special purpose register. If the data
does not match, the Z8 ignores all data until SS line is
reset. If the data does much, the microcontroller leaves
standby and continues the transaction.

3.2. Software issues

Since MIDAS complexity mainly relies on the master,
this was the main challenge when dealing with software
design. A great software engineering effort was taken in

order to produce a flexible, reusable, easy to maintain
and extend embedded code. As advanced in section 2.2,
the master software architecture consists on four slightly
coupled modules:

• Real-time kernel, which implements multitask-
ing and real-time scheduling issues.

• Network protocols.
• User's interface for RS-232 serial link.
• User's program interpreting machine.

In order to reduce coupling as much as possible among
these modules, every module presents a well-defined
standard interface consisting on a set of abstract data
types (ADT) and a set of operations that must be taken
on them. Every module (network, serial interface, etc.)
is modeled as one or more ADTs, and all functionality is
modeled as operations on these ADTs. This makes pos-
sible to fully upgrade a module without side-effects. The
description of this standard interface would exceed this
paper purposes.

The greatest deal from the software point of view was
the Real-Time kernel. Let us recall that one of our main
goals was to reduce power consumption as much as pos-
sible. For this purpose, an Hitachi H8/520 Microcontrol-
ler was chosen, as described in section 3.1. The kernel
must be able to schedule all pending tasks, but, if a
“long” period of idle time is detected until the next task
activation, the kernel must stand-by the CPU.

This is a hard problem, since the CPU wake-up may take
up to 10 milliseconds (depending on CPU clock speed),
and CPU can not response for external events except
that for NMI during stand-by mode. For this purpose, a
real-time operating system was developed for its use in
embedded Hitachi's H8-500 family applications:
LOPORTOS, which stands for LOw POwer Real Time
Operating System.

This operating system has microkernel based architec-
ture [4] and is structured into 3 modules:

• task management
• memory management
• Interprocess communication management.

The memory management is very simple, due to the
small amount of memory needed to manage (typically,
from 1K to 4K). Memory is managed as a free blocks [7]
linked list. Because hardware has no support for it, no
garbage collector can be implemented.

The interprocess communication management is also
very simple. A single message queue is assigned to ev-
ery process, identifying it by its process identification.
In the other hand, message can be sent to a queue in a
synchronous (the sender is locked until the message is
read) or asynchronous mode.

The real-time feature relies on the tasking system. This
module assigns tasks priorities according to Rate Mono-
tonic Analysis principles, assigning higher priorities to
the tasks that serve events with higher occurrence fre-
quency. Interrupts are treated as tasks: every task in the
system must declare which interrupts it manages, and
when an interrupt occurs, the kernel catches it, identifies
the task that manages it, and sends it a message identify-

ing the interrupt, waking it up for execution if the task is
currently idle.

The low power consumption feature is also managed by
the tasking system. The CPU can program a NMI gener-
ator that supplies a fixed but programmable sequence of
non maskable interrupts which can wake up CPU from
a stand-by state. Every process has a message queue,
and express its idle states trying to read a message from
its message queue. Every process has a (dynamic) prior-
ity associated, calculated from it allowable maximum
time response.When a process tries to read a message
from its queue and there is no readable message there,
the process is marked as “idle”. When the CPU detects
that every process in the system is in a idle state, it
checks whether it can program the NMI generator to
wake up CPU before next process deadline, taking in ac-
count the CPU wake-up time. If checked as possible, the
NMI generator is programmed and stand-by mode is en-
tered. This keeps the CPU as much time as possible in
stand-by mode, meeting all processes deadlines.

4. Results

Some MIDAS prototypes has been built and tested to
now. The unitary manufacturing costs estimated for me-
dium-large production series are:

MIDAS MASTER: 50$
MIDAS User Interface (LCD display and numeric key-
pad): 35$
MIDAS Main Power Supply and Smart battery charger:
25$
MIDAS Wind vane sensor: 100$(anodized aluminum)
25$(PCB)
MIDAS Anemometer: 100$(anodized aluminum)
25$(PCB)
MIDAS Temperature Sensor: 35$
MIDAS 32MB Massive storage module: 300$
MIDAS 16-Channel 16-Bit analog input-module 35$
MIDAS 32-Channel digital input-output module: 25$

The average power consumption of this whole system,
working as a typical weather-station application, result-
ed to be under 5mA.

5. Conclusions and future work

A low cost, low power data acquisition system has been
presented. The results we have obtained from the first
prototype show that having multiple low power smart
sensors connected through a bus network to a master de-
vice, on which relies data acquisition tasks, is a feasible
way to reduce cost, power consumption and system
complexity, increasing in the other hand reliability, flex-
ibility, scalability and robustness.

Future work consists on adding new features like object-
oriented master programming, multimaster network sys-
tem, and multiple logical networks coexistence on phys-
ical network.

6. References

[1] Ramón Pallàs Areny. “Sensores y Acondiciona-
dores de señal”. Ed. Marcombo, 1.994. ISBN:
84-267-0989-3.

[2] Day and Zimmermann, “The OSI Reference
Model”

[3] Andrew S. Tanenbaum. “Computer Networks”.
3rd edition. Ed. Prentice-Hall, 1996. ISBN 0-13-
349945-6.

[4] Andrew S. Tanenbaum et al. “Operating Sys-
tems: Design And Implementation” 2nd edition.
Ed. Prentice-Hall, 1997. ISBN 0-13-638677-6.

[5] “Discrete Z8 Microcontrollers. Product Specifi-
cations Databooks”. Zilog, Inc.

[6] “H8/520 Hardware Reference Guide”. Hitachi
[7] Willian Stallings. “Operating Systems”, 2nd edi-

tion. Ed. Prentice-Hall, 1997. ISBN 0-13-
180977-6.

MIDAS: An inexpensive, real-time, scalable, network-based Data Acquisition System

Antonio Barbancho and José Antonio Pérez
Departamento de Tecnología Electrónica. Universidad de Sevilla. Escuela Universitaria Politécnica de Sevilla. C/ Vir-

gen de África, 7. 41011 Sevilla. España. Tlf: (34) 5 455 28 37. Fax: (34) 5 455 28 33. Email ayboc@cica.es

Departamento de Lenguajes y Sistemas Informáticos. Universidad de Sevilla. Facultad de Informática y Estadística.
Avenida de la Reina Mercedes, s/n. 41012 Sevilla. España. Tlf: (34) 5 455 27 67. Email: jperez@lsi.us.es.

Abstract: At this paper, we present MIDAS. MIDAS is a low-cost, low-power, distributed data
acquisition system. MIDAS is based on a bus-like network and a multitasking real-time master. Sensors
are connected as slaves and are fully controlled by the network master. Since some prototypes have
already been built, we expose practical results on costs and performance obtained.

Résumé: Dans cette communication, nous présentons MIDAS. MIDAS c’est un système distribué
d’acquisition de données à bas consommation d’énergie et bas coût. MIDAS utilise une architecture de
bus, avec protocole maître-esclave et logiciel multitache temps réel. Les capteurs sont connectés comme
esclaves et sont contrôlés par le maître du réseau. Des prototypes ont déjà étés construits, et ici nous
présentons des résultats pratiques avec des considérations sur les coûts et les performances obtenues.

1. Introduction

Data acquisition systems are becoming more and more
sophisticated, having to fulfil harder requirements about
power consumption, cost, scalability and flexibility.

A modern general-purpose data acquisition system
should be able to:

• manage a large number of sensors;
• manage very different nature sensors;
• manage long distance located sensors;
• make easy installation and maintenance tasks;
• operate in stand-alone environment, battery-

powered;
• store large amount of data;
• perform real time actuation;

all of this, of course, at the lowest cost.

In this paper, we describe MIDAS, a MultIpurpose Data
Acquisition System, which complies with all these re-
quirements. MIDAS is a network-based, real-time, low-
power, low-cost system. Furthermore, MIDAS is an
open system, which can grow up as much as needed. Its
most relevant features are:

• Up to 256 elements (sensors, actuators or any
other device) can be addressed simultaneously.

• All devices are plugged into an 8-wire bus-based
network. So only eight parallel wires are needed
to power and control all devices, making easy
installation and maintenance.

• Low supply current. This enables to power it
from a battery pack with solar panel.

• All sensors have a smart interface, allowing uni-
form treatment. This simplifies management of
different nature sensors.

• All devices are plug and play. Warm plugging is
allowed.

• Real time Operating System.

• Flexible programming.

MIDAS is not a commercial system, but it has been de-
signed to be used as a prototype for several commercial
systems actually under development.

In section 2 we describe the architectural basics of MI-
DAS. Section 3 shows hardware and software imple-
mentation issues, and section 4 discusses some
experimental results obtained from first prototypes. Fi-
nally, conclusion and actual investigation lines are pre-
sented in section 5.

2. System architecture

MIDAS is based on a real-time bus-like network. Devic-
es connected to this network can be classified as masters
and slaves. Only one master is currently allowed in the
network. The master device configures and assigns net-
work addresses to slaves. The master acts as datalogger,
governing the system operation (see Fig. 1).

Fig. 1: System architecture

MASTER SLAVE

SLAVE SLAVE

...

...

All other devices in the network (intelligent sensors,
data storage systems, signal conditioning, user interfac-
es, and so on) are slaves. All slaves must show a stan-
dard interface to the network. If needed, any traditional
sensor can be connected to the network through an inter-
face module, allowing low-cost transition from tradi-
tional systems.

2.1. Network Architecture

MIDAS network model is based on a simplified OSI
model [2] and lacks of network to presentation layers.
This means, it only has physical, data link and applica-
tion layers.

The Physical Layer is concerned with transmitting raw
bits over the communication channel [3]. In order to
make a low cost design, our design is based on RS-485
and SPI (Serial Peripheral Interface) standards. The
communication channel is a bus that carries three signal
lines (CLK for clock, DATA for data and SS for slave
selection) and two power lines (V+ and ground). Since
RS-485 protocol is used, each line is composed of two
wires (balanced transmission). This makes possible
communication along medium distances (4000 feet)
without line repeaters. The communication is synchro-
nous and leaded by the master device. Transmission
speed is controlled by CLK and may be up to 10 Mbps.
Although RS-485 specifies that up to 32 loads1 on the
bus, our design uses 1/8-unit-load transceivers, allowing
256 devices on the bus.

The main task of the Data Link Layer is to take raw
transmission facility and transform it into a line that ap-
pears free of transmission errors to application layer [3].
It is also responsible for the identification of the slave.
As all devices share the bus, there must be a unique net-
work address for each device. A detailed description of
the protocol of this layer would exceed this paper pur-
poses.

The Application Layer is a collection of small protocols
providing specific solutions. Examples are file transfer,
remote operation and slave management. The later deals
with the automatic identification and configuration
(Plug'n'Play) and network address assignation.

2.2. Master Architecture

The master is responsible to perform the following
tasks:

• Manage the application level network protocol,
as described in section 2.1.

• Perform the acquisition process. This is done by
executing an user program, as we will describe
later.

From the hardware point of view, the master architec-
ture consists on a CPU microcontroller, a network inter-
face, a serial RS-232 interface, a real-time clock and

programmable NMI generator, a ROM memory contain-
ing embedded code and a nonvolatile SRAM memory
bank, as described in Fig. 2.

The purpose of the RAM bank is for device internal use
or for data storage. Data storage may be increased via an
external device connected to the network, allowing mas-
sive storage.

The serial RS-232 interface is conceived for facilitating
downloading and uploading programs, debugging and
frequent tasks like data retrieving or system monitoring.
Although a specialized device connected to the network
can be used for this purpose, having this facility inte-
grated into the master has two main advantages:

• The master is self-contained. No other device is
needed to control the system. You do not need
an additional device to perform elementary
tasks. This reduces the cost of a minimum sys-
tem.

• It reduces data traffic in the network when per-
forming such tasks, reducing congestion risk.

Furthermore, while developing MIDAS first prototypes,
this serial interface was very useful for debugging and
profiling tasks.

From the software point of view, the master contains
four independent modules:

• Real-time kernel, which implements multitask-
ing and real-time scheduling issues. This kernel
serves as basic support for all other software
facilities, as described in section 3.2.

• Network protocols for physical and data-link
layers, and master management protocol for
application layer.

• User's interface for RS-232 serial link. Simple
Xon-Xoff protocol is used to manage communi-
cation.

• User's program interpreting machine. The mas-
ter executes an user-supplied program which
executes on an emulated virtual data acquisition
machine.

Software aspects are detailed in section 3.2.

1. A load is the input impedance of a transceiver,
and is 12KΩ in the standard.

NMI
Generator

R.T.
Clock

Serial
Interface

ROM

SRAM

µP
Network
Interface

RS-232

Network

Fig. 2: Master architecture

2.3. Slave Architecture

Since the master has not input/output capability (except
for the network and serial links), it has to reside on the
sensor end. Therefore slave architecture is very applica-
tion dependent. Nevertheless, it always must include an
interface part to the network. This interface has been de-
signed to be simple, allowing low cost and low power.

3. Implementation issues

3.1. Hardware issues

Two types of cables can be present on a bus: 10-wire
IDC ribbon cable for short distances, and 4 twisted pair
24 AWG cable for long distances and special protection.
A special connection module has been designed to con-
nect both.

The master device is based on the Hitachi H8/500 mi-
crocontroller family. It was selected because of its 16
bits nature, low power, rich set of peripherals and low
cost. The first prototypes use the H8/520, a small 64 pin
PLCC housed, 32 Kb OTP EPROM and 1 Kb RAM mi-
crocontroller. A pair of USART on-chip peripherals al-
lows connection to an RS-232 port and to the network.

A bank of SRAM is also available on the master, allow-
ing up to 512 Kb of local, fast, nonvolatile memory. A
lithium battery must be internally or externally connect-
ed to power SRAM and real- time clock in the absence
of main power.

In order to increase the number of devices that can be
present on the bus, 1/8-unit-load RS-485 transceivers
are used, allowing up to 256 devices. The MAX3082
was selected due their low power, low cost and fail-safe
features. This make possible turning off all drivers to
save power when the bus is idle. When a receiver 'sees'
a floating line, puts its output in a known state (high).

The whole master is enclosed in a small DIN rail mount
enclosure.

Slave architecture is application dependent as noted in
section 2.3. The network interface and other common
tasks rely on a Zilog Z8 microcontroller [5]. A Z86E06
device was chosen due to its very low cost, very low
power, low pin count and SPI capabilities. A unique fea-
ture of this device is its ability to act as SPI slave in a
compare mode. In this mode, the microntroller is in
standby mode, drawing a few microamperes. The SPI
peripheral is controlled externally by the master. A
transaction begins with the assertion of SS line. Then
eight bits are received via the DATA line. This byte is
compared with a special purpose register. If the data
does not match, the Z8 ignores all data until SS line is
reset. If the data does much, the microcontroller leaves
standby and continues the transaction.

3.2. Software issues

Since MIDAS complexity mainly relies on the master,
this was the main challenge when dealing with software
design. A great software engineering effort was taken in

order to produce a flexible, reusable, easy to maintain
and extend embedded code. As advanced in section 2.2,
the master software architecture consists on four slightly
coupled modules:

• Real-time kernel, which implements multitask-
ing and real-time scheduling issues.

• Network protocols.
• User's interface for RS-232 serial link.
• User's program interpreting machine.

In order to reduce coupling as much as possible among
these modules, every module presents a well-defined
standard interface consisting on a set of abstract data
types (ADT) and a set of operations that must be taken
on them. Every module (network, serial interface, etc.)
is modeled as one or more ADTs, and all functionality is
modeled as operations on these ADTs. This makes pos-
sible to fully upgrade a module without side-effects. The
description of this standard interface would exceed this
paper purposes.

The greatest deal from the software point of view was
the Real-Time kernel. Let us recall that one of our main
goals was to reduce power consumption as much as pos-
sible. For this purpose, an Hitachi H8/520 Microcontrol-
ler was chosen, as described in section 3.1. The kernel
must be able to schedule all pending tasks, but, if a
“long” period of idle time is detected until the next task
activation, the kernel must stand-by the CPU.

This is a hard problem, since the CPU wake-up may take
up to 10 milliseconds (depending on CPU clock speed),
and CPU can not response for external events except
that for NMI during stand-by mode. For this purpose, a
real-time operating system was developed for its use in
embedded Hitachi's H8-500 family applications:
LOPORTOS, which stands for LOw POwer Real Time
Operating System.

This operating system has microkernel based architec-
ture [4] and is structured into 3 modules:

• task management
• memory management
• Interprocess communication management.

The memory management is very simple, due to the
small amount of memory needed to manage (typically,
from 1K to 4K). Memory is managed as a free blocks [7]
linked list. Because hardware has no support for it, no
garbage collector can be implemented.

The interprocess communication management is also
very simple. A single message queue is assigned to ev-
ery process, identifying it by its process identification.
In the other hand, message can be sent to a queue in a
synchronous (the sender is locked until the message is
read) or asynchronous mode.

The real-time feature relies on the tasking system. This
module assigns tasks priorities according to Rate Mono-
tonic Analysis principles, assigning higher priorities to
the tasks that serve events with higher occurrence fre-
quency. Interrupts are treated as tasks: every task in the
system must declare which interrupts it manages, and
when an interrupt occurs, the kernel catches it, identifies
the task that manages it, and sends it a message identify-

ing the interrupt, waking it up for execution if the task is
currently idle.

The low power consumption feature is also managed by
the tasking system. The CPU can program a NMI gener-
ator that supplies a fixed but programmable sequence of
non maskable interrupts which can wake up CPU from
a stand-by state. Every process has a message queue,
and express its idle states trying to read a message from
its message queue. Every process has a (dynamic) prior-
ity associated, calculated from it allowable maximum
time response.When a process tries to read a message
from its queue and there is no readable message there,
the process is marked as “idle”. When the CPU detects
that every process in the system is in a idle state, it
checks whether it can program the NMI generator to
wake up CPU before next process deadline, taking in ac-
count the CPU wake-up time. If checked as possible, the
NMI generator is programmed and stand-by mode is en-
tered. This keeps the CPU as much time as possible in
stand-by mode, meeting all processes deadlines.

4. Results

Some MIDAS prototypes has been built and tested to
now. The unitary manufacturing costs estimated for me-
dium-large production series are:

MIDAS MASTER: 50$
MIDAS User Interface (LCD display and numeric key-
pad): 35$
MIDAS Main Power Supply and Smart battery charger:
25$
MIDAS Wind vane sensor: 100$(anodized aluminum)
25$(PCB)
MIDAS Anemometer: 100$(anodized aluminum)
25$(PCB)
MIDAS Temperature Sensor: 35$
MIDAS 32MB Massive storage module: 300$
MIDAS 16-Channel 16-Bit analog input-module 35$
MIDAS 32-Channel digital input-output module: 25$

The average power consumption of this whole system,
working as a typical weather-station application, result-
ed to be under 5mA.

5. Conclusions and future work

A low cost, low power data acquisition system has been
presented. The results we have obtained from the first
prototype show that having multiple low power smart
sensors connected through a bus network to a master de-
vice, on which relies data acquisition tasks, is a feasible
way to reduce cost, power consumption and system
complexity, increasing in the other hand reliability, flex-
ibility, scalability and robustness.

Future work consists on adding new features like object-
oriented master programming, multimaster network sys-
tem, and multiple logical networks coexistence on phys-
ical network.

6. References

[1] Ramón Pallàs Areny. “Sensores y Acondiciona-
dores de señal”. Ed. Marcombo, 1.994. ISBN:
84-267-0989-3.

[2] Day and Zimmermann, “The OSI Reference
Model”

[3] Andrew S. Tanenbaum. “Computer Networks”.
3rd edition. Ed. Prentice-Hall, 1996. ISBN 0-13-
349945-6.

[4] Andrew S. Tanenbaum et al. “Operating Sys-
tems: Design And Implementation” 2nd edition.
Ed. Prentice-Hall, 1997. ISBN 0-13-638677-6.

[5] “Discrete Z8 Microcontrollers. Product Specifi-
cations Databooks”. Zilog, Inc.

[6] “H8/520 Hardware Reference Guide”. Hitachi
[7] Willian Stallings. “Operating Systems”, 2nd edi-

tion. Ed. Prentice-Hall, 1997. ISBN 0-13-
180977-6.

MIDAS: An inexpensive, real-time, scalable, network-based Data Acquisition System

Antonio Barbancho and José Antonio Pérez
Departamento de Tecnología Electrónica. Universidad de Sevilla. Escuela Universitaria Politécnica de Sevilla. C/ Vir-

gen de África, 7. 41011 Sevilla. España. Tlf: (34) 5 455 28 37. Fax: (34) 5 455 28 33. Email ayboc@cica.es

Departamento de Lenguajes y Sistemas Informáticos. Universidad de Sevilla. Facultad de Informática y Estadística.
Avenida de la Reina Mercedes, s/n. 41012 Sevilla. España. Tlf: (34) 5 455 27 67. Email: jperez@lsi.us.es.

Abstract: At this paper, we present MIDAS. MIDAS is a low-cost, low-power, distributed data
acquisition system. MIDAS is based on a bus-like network and a multitasking real-time master. Sensors
are connected as slaves and are fully controlled by the network master. Since some prototypes have
already been built, we expose practical results on costs and performance obtained.

Résumé: Dans cette communication, nous présentons MIDAS. MIDAS c’est un système distribué
d’acquisition de données à bas consommation d’énergie et bas coût. MIDAS utilise une architecture de
bus, avec protocole maître-esclave et logiciel multitache temps réel. Les capteurs sont connectés comme
esclaves et sont contrôlés par le maître du réseau. Des prototypes ont déjà étés construits, et ici nous
présentons des résultats pratiques avec des considérations sur les coûts et les performances obtenues.

1. Introduction

Data acquisition systems are becoming more and more
sophisticated, having to fulfil harder requirements about
power consumption, cost, scalability and flexibility.

A modern general-purpose data acquisition system
should be able to:

• manage a large number of sensors;
• manage very different nature sensors;
• manage long distance located sensors;
• make easy installation and maintenance tasks;
• operate in stand-alone environment, battery-

powered;
• store large amount of data;
• perform real time actuation;

all of this, of course, at the lowest cost.

In this paper, we describe MIDAS, a MultIpurpose Data
Acquisition System, which complies with all these re-
quirements. MIDAS is a network-based, real-time, low-
power, low-cost system. Furthermore, MIDAS is an
open system, which can grow up as much as needed. Its
most relevant features are:

• Up to 256 elements (sensors, actuators or any
other device) can be addressed simultaneously.

• All devices are plugged into an 8-wire bus-based
network. So only eight parallel wires are needed
to power and control all devices, making easy
installation and maintenance.

• Low supply current. This enables to power it
from a battery pack with solar panel.

• All sensors have a smart interface, allowing uni-
form treatment. This simplifies management of
different nature sensors.

• All devices are plug and play. Warm plugging is
allowed.

• Real time Operating System.

• Flexible programming.

MIDAS is not a commercial system, but it has been de-
signed to be used as a prototype for several commercial
systems actually under development.

In section 2 we describe the architectural basics of MI-
DAS. Section 3 shows hardware and software imple-
mentation issues, and section 4 discusses some
experimental results obtained from first prototypes. Fi-
nally, conclusion and actual investigation lines are pre-
sented in section 5.

2. System architecture

MIDAS is based on a real-time bus-like network. Devic-
es connected to this network can be classified as masters
and slaves. Only one master is currently allowed in the
network. The master device configures and assigns net-
work addresses to slaves. The master acts as datalogger,
governing the system operation (see Fig. 1).

Fig. 1: System architecture

MASTER SLAVE

SLAVE SLAVE

...

...

All other devices in the network (intelligent sensors,
data storage systems, signal conditioning, user interfac-
es, and so on) are slaves. All slaves must show a stan-
dard interface to the network. If needed, any traditional
sensor can be connected to the network through an inter-
face module, allowing low-cost transition from tradi-
tional systems.

2.1. Network Architecture

MIDAS network model is based on a simplified OSI
model [2] and lacks of network to presentation layers.
This means, it only has physical, data link and applica-
tion layers.

The Physical Layer is concerned with transmitting raw
bits over the communication channel [3]. In order to
make a low cost design, our design is based on RS-485
and SPI (Serial Peripheral Interface) standards. The
communication channel is a bus that carries three signal
lines (CLK for clock, DATA for data and SS for slave
selection) and two power lines (V+ and ground). Since
RS-485 protocol is used, each line is composed of two
wires (balanced transmission). This makes possible
communication along medium distances (4000 feet)
without line repeaters. The communication is synchro-
nous and leaded by the master device. Transmission
speed is controlled by CLK and may be up to 10 Mbps.
Although RS-485 specifies that up to 32 loads1 on the
bus, our design uses 1/8-unit-load transceivers, allowing
256 devices on the bus.

The main task of the Data Link Layer is to take raw
transmission facility and transform it into a line that ap-
pears free of transmission errors to application layer [3].
It is also responsible for the identification of the slave.
As all devices share the bus, there must be a unique net-
work address for each device. A detailed description of
the protocol of this layer would exceed this paper pur-
poses.

The Application Layer is a collection of small protocols
providing specific solutions. Examples are file transfer,
remote operation and slave management. The later deals
with the automatic identification and configuration
(Plug'n'Play) and network address assignation.

2.2. Master Architecture

The master is responsible to perform the following
tasks:

• Manage the application level network protocol,
as described in section 2.1.

• Perform the acquisition process. This is done by
executing an user program, as we will describe
later.

From the hardware point of view, the master architec-
ture consists on a CPU microcontroller, a network inter-
face, a serial RS-232 interface, a real-time clock and

programmable NMI generator, a ROM memory contain-
ing embedded code and a nonvolatile SRAM memory
bank, as described in Fig. 2.

The purpose of the RAM bank is for device internal use
or for data storage. Data storage may be increased via an
external device connected to the network, allowing mas-
sive storage.

The serial RS-232 interface is conceived for facilitating
downloading and uploading programs, debugging and
frequent tasks like data retrieving or system monitoring.
Although a specialized device connected to the network
can be used for this purpose, having this facility inte-
grated into the master has two main advantages:

• The master is self-contained. No other device is
needed to control the system. You do not need
an additional device to perform elementary
tasks. This reduces the cost of a minimum sys-
tem.

• It reduces data traffic in the network when per-
forming such tasks, reducing congestion risk.

Furthermore, while developing MIDAS first prototypes,
this serial interface was very useful for debugging and
profiling tasks.

From the software point of view, the master contains
four independent modules:

• Real-time kernel, which implements multitask-
ing and real-time scheduling issues. This kernel
serves as basic support for all other software
facilities, as described in section 3.2.

• Network protocols for physical and data-link
layers, and master management protocol for
application layer.

• User's interface for RS-232 serial link. Simple
Xon-Xoff protocol is used to manage communi-
cation.

• User's program interpreting machine. The mas-
ter executes an user-supplied program which
executes on an emulated virtual data acquisition
machine.

Software aspects are detailed in section 3.2.

1. A load is the input impedance of a transceiver,
and is 12KΩ in the standard.

NMI
Generator

R.T.
Clock

Serial
Interface

ROM

SRAM

µP
Network
Interface

RS-232

Network

Fig. 2: Master architecture

2.3. Slave Architecture

Since the master has not input/output capability (except
for the network and serial links), it has to reside on the
sensor end. Therefore slave architecture is very applica-
tion dependent. Nevertheless, it always must include an
interface part to the network. This interface has been de-
signed to be simple, allowing low cost and low power.

3. Implementation issues

3.1. Hardware issues

Two types of cables can be present on a bus: 10-wire
IDC ribbon cable for short distances, and 4 twisted pair
24 AWG cable for long distances and special protection.
A special connection module has been designed to con-
nect both.

The master device is based on the Hitachi H8/500 mi-
crocontroller family. It was selected because of its 16
bits nature, low power, rich set of peripherals and low
cost. The first prototypes use the H8/520, a small 64 pin
PLCC housed, 32 Kb OTP EPROM and 1 Kb RAM mi-
crocontroller. A pair of USART on-chip peripherals al-
lows connection to an RS-232 port and to the network.

A bank of SRAM is also available on the master, allow-
ing up to 512 Kb of local, fast, nonvolatile memory. A
lithium battery must be internally or externally connect-
ed to power SRAM and real- time clock in the absence
of main power.

In order to increase the number of devices that can be
present on the bus, 1/8-unit-load RS-485 transceivers
are used, allowing up to 256 devices. The MAX3082
was selected due their low power, low cost and fail-safe
features. This make possible turning off all drivers to
save power when the bus is idle. When a receiver 'sees'
a floating line, puts its output in a known state (high).

The whole master is enclosed in a small DIN rail mount
enclosure.

Slave architecture is application dependent as noted in
section 2.3. The network interface and other common
tasks rely on a Zilog Z8 microcontroller [5]. A Z86E06
device was chosen due to its very low cost, very low
power, low pin count and SPI capabilities. A unique fea-
ture of this device is its ability to act as SPI slave in a
compare mode. In this mode, the microntroller is in
standby mode, drawing a few microamperes. The SPI
peripheral is controlled externally by the master. A
transaction begins with the assertion of SS line. Then
eight bits are received via the DATA line. This byte is
compared with a special purpose register. If the data
does not match, the Z8 ignores all data until SS line is
reset. If the data does much, the microcontroller leaves
standby and continues the transaction.

3.2. Software issues

Since MIDAS complexity mainly relies on the master,
this was the main challenge when dealing with software
design. A great software engineering effort was taken in

order to produce a flexible, reusable, easy to maintain
and extend embedded code. As advanced in section 2.2,
the master software architecture consists on four slightly
coupled modules:

• Real-time kernel, which implements multitask-
ing and real-time scheduling issues.

• Network protocols.
• User's interface for RS-232 serial link.
• User's program interpreting machine.

In order to reduce coupling as much as possible among
these modules, every module presents a well-defined
standard interface consisting on a set of abstract data
types (ADT) and a set of operations that must be taken
on them. Every module (network, serial interface, etc.)
is modeled as one or more ADTs, and all functionality is
modeled as operations on these ADTs. This makes pos-
sible to fully upgrade a module without side-effects. The
description of this standard interface would exceed this
paper purposes.

The greatest deal from the software point of view was
the Real-Time kernel. Let us recall that one of our main
goals was to reduce power consumption as much as pos-
sible. For this purpose, an Hitachi H8/520 Microcontrol-
ler was chosen, as described in section 3.1. The kernel
must be able to schedule all pending tasks, but, if a
“long” period of idle time is detected until the next task
activation, the kernel must stand-by the CPU.

This is a hard problem, since the CPU wake-up may take
up to 10 milliseconds (depending on CPU clock speed),
and CPU can not response for external events except
that for NMI during stand-by mode. For this purpose, a
real-time operating system was developed for its use in
embedded Hitachi's H8-500 family applications:
LOPORTOS, which stands for LOw POwer Real Time
Operating System.

This operating system has microkernel based architec-
ture [4] and is structured into 3 modules:

• task management
• memory management
• Interprocess communication management.

The memory management is very simple, due to the
small amount of memory needed to manage (typically,
from 1K to 4K). Memory is managed as a free blocks [7]
linked list. Because hardware has no support for it, no
garbage collector can be implemented.

The interprocess communication management is also
very simple. A single message queue is assigned to ev-
ery process, identifying it by its process identification.
In the other hand, message can be sent to a queue in a
synchronous (the sender is locked until the message is
read) or asynchronous mode.

The real-time feature relies on the tasking system. This
module assigns tasks priorities according to Rate Mono-
tonic Analysis principles, assigning higher priorities to
the tasks that serve events with higher occurrence fre-
quency. Interrupts are treated as tasks: every task in the
system must declare which interrupts it manages, and
when an interrupt occurs, the kernel catches it, identifies
the task that manages it, and sends it a message identify-

ing the interrupt, waking it up for execution if the task is
currently idle.

The low power consumption feature is also managed by
the tasking system. The CPU can program a NMI gener-
ator that supplies a fixed but programmable sequence of
non maskable interrupts which can wake up CPU from
a stand-by state. Every process has a message queue,
and express its idle states trying to read a message from
its message queue. Every process has a (dynamic) prior-
ity associated, calculated from it allowable maximum
time response.When a process tries to read a message
from its queue and there is no readable message there,
the process is marked as “idle”. When the CPU detects
that every process in the system is in a idle state, it
checks whether it can program the NMI generator to
wake up CPU before next process deadline, taking in ac-
count the CPU wake-up time. If checked as possible, the
NMI generator is programmed and stand-by mode is en-
tered. This keeps the CPU as much time as possible in
stand-by mode, meeting all processes deadlines.

4. Results

Some MIDAS prototypes has been built and tested to
now. The unitary manufacturing costs estimated for me-
dium-large production series are:

MIDAS MASTER: 50$
MIDAS User Interface (LCD display and numeric key-
pad): 35$
MIDAS Main Power Supply and Smart battery charger:
25$
MIDAS Wind vane sensor: 100$(anodized aluminum)
25$(PCB)
MIDAS Anemometer: 100$(anodized aluminum)
25$(PCB)
MIDAS Temperature Sensor: 35$
MIDAS 32MB Massive storage module: 300$
MIDAS 16-Channel 16-Bit analog input-module 35$
MIDAS 32-Channel digital input-output module: 25$

The average power consumption of this whole system,
working as a typical weather-station application, result-
ed to be under 5mA.

5. Conclusions and future work

A low cost, low power data acquisition system has been
presented. The results we have obtained from the first
prototype show that having multiple low power smart
sensors connected through a bus network to a master de-
vice, on which relies data acquisition tasks, is a feasible
way to reduce cost, power consumption and system
complexity, increasing in the other hand reliability, flex-
ibility, scalability and robustness.

Future work consists on adding new features like object-
oriented master programming, multimaster network sys-
tem, and multiple logical networks coexistence on phys-
ical network.

6. References

[1] Ramón Pallàs Areny. “Sensores y Acondiciona-
dores de señal”. Ed. Marcombo, 1.994. ISBN:
84-267-0989-3.

[2] Day and Zimmermann, “The OSI Reference
Model”

[3] Andrew S. Tanenbaum. “Computer Networks”.
3rd edition. Ed. Prentice-Hall, 1996. ISBN 0-13-
349945-6.

[4] Andrew S. Tanenbaum et al. “Operating Sys-
tems: Design And Implementation” 2nd edition.
Ed. Prentice-Hall, 1997. ISBN 0-13-638677-6.

[5] “Discrete Z8 Microcontrollers. Product Specifi-
cations Databooks”. Zilog, Inc.

[6] “H8/520 Hardware Reference Guide”. Hitachi
[7] Willian Stallings. “Operating Systems”, 2nd edi-

tion. Ed. Prentice-Hall, 1997. ISBN 0-13-
180977-6.

