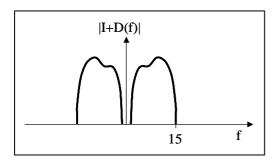
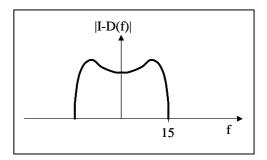
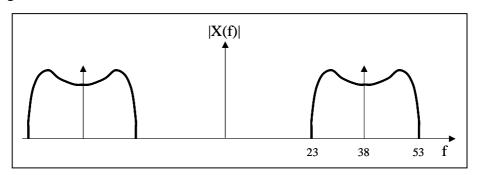

Problema PTC0003-47

La FM estéreo comercial funciona según el esquema adjunto. Cada una de las señales izquierda (I) y derecha (D) tienen un ancho de banda de 15 KHz

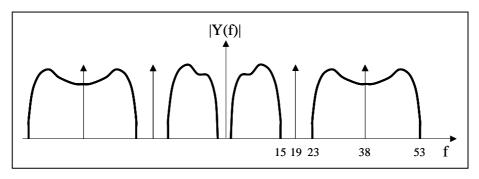

- a) Dibujar el espectro típico a la entrada del modulador de FM
- b) Calcular el índice de modulación y la desviación de frecuencia si el ancho de banda ha de mantenerse en 240 KHz.



Solución PTC0003-47


Apartado a)

Los espectros de las señales I+D y I-D tendrán formas arbitrarias, tales como por ejemplo los de las figuras, pero con un ancho de banda de 15KHz.



El espectro de la señal a la salida del modulador de AM, será igual al de la señal I-D pero desplazado a la frecuencia de la portadora (38 KHz) y duplicado, tal como aparece en la figura.

El espectro de la señal a la entrada del modulador de FM (salida del sumador) será la suma de los espectros de los que se compone, tal como se representa en la figura siguiente.

Apartado b)

Como podemos observar, la máxima frecuencia espectral de la señal modulante es de 53 KHz. El ancho de banda de señales FM se determina mediante la expresión

$$B = 2 n_s f_m$$

siendo n_s el número de componentes significativas del espectro de la señal FM (función del índice de modulación β) y f_m la frecuencia máxima de la señal modulante. Por tanto,

$$n_s = \frac{B}{2 f_m} = \frac{240}{2.53} = 2'26 \text{ armónicos}$$

De acuerdo con la tabla de valores de las funciones de Bessel para distintos valores de n y β , vemos que podemos elegir el índice de modulación como

$$\beta = 1$$

n	$J_n(β); β=0.5$	$J_n(\boldsymbol{\beta}); \beta=1$	$J_n(\boldsymbol{\beta}); \beta=2$
0	0.938	0.765	0.224
1	0.242	0.440	0.577
2	0.031	0.115	0.353
3	0.003	0.020	0.129
4	-	0.002	0.034
5	-	-	0.007
6	-	-	0.001
7	-	-	-

Para calcular la desviación de frecuencia debemos tener en cuenta la definición de índice de modulación en FM que vale

$$\beta = \frac{\Delta f}{B_f}$$

por lo que

$$\Delta f = \beta \cdot B_f = 1.53 KHz = 53 KHz$$