Problema PTC0004-28

Una señal senoidal de 1 Khz y 1 voltio de amplitud modula en amplitud una portadora senoidal de 10 Khz y 5 voltios de amplitud. El índice de modulación es 1. Determinar:

- a) El espectro de la señal original.
- b) El espectro de la señal modulada.
- c) Repetir el apartado anterior para distintas amplitudes de la señal modulante.

Solución PTC0004-28

Apartado a)

Sabemos que la señal modulante puede representarse genéricamente mediante una función periódica f(t), que admite un desarrollo en serie de Fourier de acuerdo con la expresión

$$f(t) = \frac{1}{T} \sum_{n=-\infty}^{\infty} c_{fn} e^{j\omega_n t}$$

en la que los coeficientes se calculan de acuerdo con:

$$c_{fn} = \int_{-T/2}^{T/2} f(t)e^{-j\omega_n t} dt$$

Según se puede calcular (ver problema PTC0004-07) existen sólo valores para n=±1 (un único componente armónico) de valor

$$c_{fn} = \frac{AT}{2} \quad \forall n = \pm 1$$

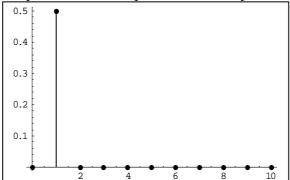
siendo A la amplitud de la señal cuadrada. Cada armónico vale

$$M_{fn} = \frac{\left|c_{fn}\right|}{T} + \frac{\left|c_{-fn}\right|}{T} \quad \forall n > 0$$

y sustituyendo

$$M_{fn} = A \quad \forall n = 1$$

El espectro de amplitud para frecuencias positivas se refleja en la figura siguiente



Para obtener los valores de los armónicos en dB sobre voltios RMS los valores esperados serán

$$M_{fndBV_{RMS}} = 20\log\frac{M_{fn}}{\sqrt{2}} \quad \forall n > 0$$

Los resultados son los siguientes

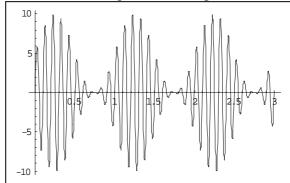
Frecuencia	Armónico	
(en Khz.)	(en dBV)	
1 Khz.	-3.01 dBV	

Apartado b)

Llamando g(t) a la señal modulada sabemos que

$$g(t) = A_p \left[1 + m \cdot f(t) \right] \cos \left(\omega_p t \right)$$

siendo m el índice de modulación. Su representación gráfica es la siguiente



Para calcular su espectro escribimos

$$g(t) = A_p \cos(\omega_p t) + A_p m f(t) \cos(\omega_p t)$$

$$G(\omega) = \mathcal{F}[g(t)] = \mathcal{F}\left[A_p \cos(\omega_p t) + A_p m f(t) \cos(\omega_p t)\right]$$

$$G(\omega) = \mathcal{F} \left[A_p \cos(\omega_p t) \right] + \mathcal{F} \left[A_p m f(t) \cos(\omega_p t) \right]$$

El primer sumando corresponde a la portadora senoidal y su espectro será

$$P(\omega) = \mathcal{F} \left[A_p \cos \left(\omega_p t \right) \right]$$

de donde

$$G(\omega) = P(\omega) + \mathcal{F}\left[A_p m f(t) \cos\left(\omega_p t\right)\right]$$

Por otra parte, el segundo sumando vale

$$G_2(\omega) = \mathcal{F}\left[A_p m f(t) \cos(\omega_p t)\right] = \int_{-\infty}^{\infty} A_p m f(t) \cos(\omega_p t) e^{-j\omega t} dt$$

$$G_{2}(\omega) = \int_{-\infty}^{\infty} A_{p} m f(t) \frac{e^{j\omega_{p}t} + e^{-j\omega_{p}t}}{2} e^{-j\omega t} dt$$

$$G_{2}(\omega) = \frac{A_{p}m}{2} \int_{-\infty}^{\infty} f(t) e^{-j(\omega - \omega_{p})t} dt + \frac{A_{p}m}{2} \int_{-\infty}^{\infty} f(t) e^{-j(\omega + \omega_{p})t} dt$$

$$G_{2}(\omega) = \frac{A_{p}m}{2} F(\omega - \omega_{p}) + \frac{A_{p}m}{2} F(\omega + \omega_{p})$$

$$G_{2}(\omega) = \frac{A_{p}m}{2} \left[F(\omega - \omega_{p}) + F(\omega + \omega_{p}) \right]$$

Por lo tanto, finalmente, el espectro de una señal modulada en amplitud vale

$$G(\omega) = P(\omega) + \frac{A_p m}{2} \left[F(\omega - \omega_p) + F(\omega + \omega_p) \right]$$

Análogamente

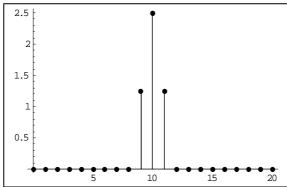
$$c_{gn} = c_{pn} + \frac{A_p m}{2} c_{fn,\omega_p} + \frac{A_p m}{2} c_{fn,-\omega_p}$$

donde $c_{fn,\omega p}$ corresponde a los coeficientes del desarrollo en serie de la señal original, desplazados en frecuencia en la magnitud f_p ; mientras que $c_{fn,-\omega p}$ corresponde a los coeficientes del desarrollo en serie de la señal original, desplazados en frecuencia en la magnitud f_p . Análogamente, para los armónicos podemos escribir

$$M_{gn} = M_{pn} + \frac{A_p m}{2} M_{fn,\omega_p} + \frac{A_p m}{2} M_{fn,-\omega_p}$$

expresión en la que $M_{fn,\omega p}$ representa a los armónicos (bilaterales) correspondientes al espectro de la modulante centrado en ω_p .

El espectro de amplitud de la señal modulada para frecuencias positivas se refleja en la figura siguiente

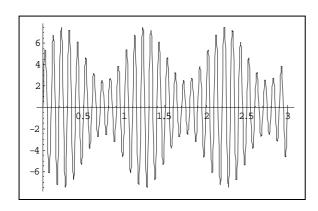


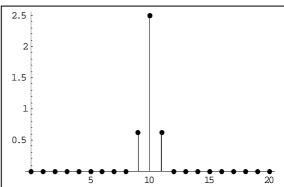
Los valores numéricos de los armónicos son los siguientes

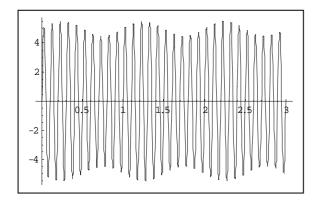
Frecuencia (en Khz.)	Armónico (en dBV)
9 Khz.	4.95 dBV
10 Khz.	10.97 dBV
11 Khz.	4.95 dBV

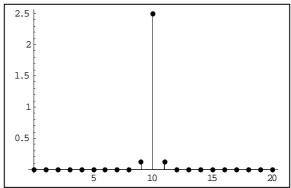
Apartado c)

En la figura se representan las señales moduladas y sus espectros cuando la amplitud de la modulante es, respectivamente, de $0.5 \mathrm{V}$ y de $0.1 \mathrm{V}$.









Los valores numéricos de los armónicos son

Frecuencia	Armónico (en dBV)		
(en Khz.)	A=1V	A=0.5V	A=0.1V
9 Khz.	4.95 dBV	-1.07 dBV	-15.05 dBV
10 Khz.	10.97 dBV	10.97 dBV	10.97 dBV
11 Khz.	4.95 dBV	-1.07 dBV	-15.05 dBV