
i

XV Workshop IBERCHIP, Vol. 1

Palacio de Correos y Telecomunicaciones

Ciudad Autónoma de Buenos Aires

Marzo 25-27, 2009

Fernando G. Tinetti (Ed.)

xx

Cordova, David; Jorge De la Cruz; Carlos Silva

Poster

(P93) DLL Programável para Interfaceamento..501

Cardoso, Adriano; Vlademir de Jesus Silva Oliveira; Nobuo Oki

Tema: Sistemas Empotrados

Artículos

(A59) Accurate and compact implementation of a hardware SNTP Client.....................................504

Viejo Cortés, Julián; J. Juan; E. Ostua; M. J. Bellido; A. Millan; A. Muñoz; J. I. Villar

(A75) Desenvolvimento de um IP Sintetizável para uma Interface Escravo de Rede

Automotiva LIN 2.1...510

Pereira, Rodrigo; Cesar Albenes Zeferino

(A90) Trading-off Power/Reliability in the Embedded Systems Software Design516

Vargas, Fabian; Cláudia A. Rocha; Luís Fernando Cristófoli

(A134) Design of a spectrum analyzer for low frequency...520

Maldonado, Frank; Silva Cardenas, Carlos; Granados Ly, Alfredo

(A156) Sistema Embebido de Monitoréo Web..526

Rapallini, Jose Antonio; Jorge Osio; Juan Czerwien; Walter Aróztegui; Antonio Adrián Quijano

Poster

(P140) IP core Puente USB a WISHBONE...531

Melo, Rodrigo; Salvador E. Tropea

Tema: Procesamiento de Video e Imágenes

Artículos

(A25) Detección Rápida de Puntos Salientes en Imágenes ...534

Leiva, Lucas; Nelson Acosta

(A54) Implementação de um Codificador CAVLC para o Codificador H.264/AVC, visando

Aplicações para HDTV em Tempo Real ...539

Ramos, Fábio; Sergio Bampi

(A82) A Proposed Algorithm for Coordinate-Center ..545

Garcia Bernal, Salvador; David Baez López; Albino Martinez Sibaja

(A86) Arquitetura Dedicada para o Loop de Transformadas e Quantização para a Predição

Intra-Quadros do Padrão H.264/AVC ...550

Palomino, Daniel; Felipe Sampaio; Robson Dornelles; Luciano Agostini; Sérgio Bampi

Accurate and compact implementation of a
hardware SNTP Client

J. Viejo, J. Juan, E. Ostua, M. J. Bellido, A. Millan, A. Muñoz, and J. I. Villar
Grupo ID2 (Investigacion y Desarrollo Digital)

Departamento de Tecnologia Electronica-Universidad de Sevilla

E. T. S. Ing. Informatica, Campus Universitario Reina Mercedes

41012 Sevilla (SPAIN)

Email: julian@dte.us.es, jjchico@dte.us.es, ostua@dte.us.es, bellido@dte.us.es,

amillan@dte.us.es, amrivera@dte.us.es, jose@dte.us.es

Abstract—This contribution presents a compact, accurate and
cost-effective SNTP client implementation. Once synchronized to
a �S)NTP server, the client functions as a GPS unit generating a
PPS �Pulse Per Second) signal and NMEA information through
a serial port. This device is part of a technological platform
implementing accurate synchronization solutions for Remote
Terminal Units �RTUs) commonly used in industrial control
systems.

I. INTRODUCTION

Time stamping is a critical task in many industrial control

systems. Data acquisition by Remote Terminal Units (RTUs)

being a typical example. In this sense, the industry norm

IEC 61850 [1] defines the Simple Network Time Protocol

(SNTP) [2] over Ethernet as a standard way to synchronize

a set of substations with a time server. SNTP is a simplified

version of the more general Network Time Protocol (NTP)

[3] that is commonly used in Internet servers and routers.

Both SNTP and NTP share the same communication protocol

and data format, the main difference being that NTP uses

sophisticated algorithms that ensures a correct synchronization

with multiple servers under highly variable latency data links,

which is common in a world wide network like the Internet. On

the contrary, SNTP covers the synchronization with a single

server and uses a simplified stateless algorithm, which makes

it suitable for embedded systems in a controlled industrial

environment. Nevertheless, a SNTP client may communicate

with either a SNTP server or a full NTP server.

In this scenario, a time server will typically gather ac-

curate time information from an absolute reference like an

accurate clock or a GPS receiver. SNTP clients located at

the substations will synchronize with the server through the

Local Area Network (LAN) making it unnecessary to install

absolute references at the substations. SNTP clients will then

provide the nearby electronic equipment with the necessary

time information.

This contribution is part of a project supported by the Min-

istry of Industry of Spain and leaded by the Telvent company

[4] which finality is to develop a Common Technological

Platform (PTC) to easy the implementation of the functionality

typically found in Remote Terminal Units (RTU) used to

control the public power grid. A key point in the project is to

assure the synchronization of electronic equipment within the

range of a few microseconds. This synchronization is achieved

by the use of SNTP clients and servers fully implemented in

hardware. SNTP client and server design is divided in three

main phases:

1) Basic protocol stack implementation and integration

with Ethernet controller. At least the following protocols

are needed: IP, ARP, UDP and NTP.

2) NTP client implementation: issuing of requests, answer

processing and local clock synchronization.

3) NTP server implementation: synchronization with an

external reference and request processing.

This paper describes the current status of the client imple-

mentation that includes phase 1 and phase 2.

The rest of this contribution is organized as follows: a

brief introduction to NTP and SNTP is included in section

2, section 3 enumerates the requirements of the system and

general specifications, section 4 gives the details of the design

and implementation of the hardware SNTP client, section 5

includes some implementation results and section 6 discusses

some conclusions.

II. NTP/SNTP PROTOCOL BASIC OPERATION

The operation of the NTP/SNTP protocol is very simple

(Fig. 1). The client sends a request to the server by issuing

an UDP data packet where the time of its local clock (1) is

included. When the request is received at the server a new time

stamp 2 is generated with the reception time as given by the

server’s local clock. After processing the request, the server

issues a reply including the time at which the reply leaves

the server (3). When the client receives the reply the arrival

time (4) is also annotated. With this set of timestamps the

client can calculate the round trip time (rd) and the time offset

between the server’s and client’s clocks (offset). Assuming a

symmetric connection it gives:

rd = (4 − 1) − (3 − 2)

offset =
(2 − 1) + (3 − 4)

2
(1)

XV Workshop Iberchip, Buenos Aires - Argentina, 25 - 27 de Marzo de 2009

504

Fig. 1. Operation of the NTP/SNTP protocol.

Using the calculated offset the client can correct its local

clock to match the server time. Software implementations

of NTP tipically achieve time synchronization within a mil-

lisecond with respect to the server [3]. There are two main

sources of error. The first one is the asymmetry in the network

communication when the time spent by the client’s request to

reach the server is different to the time spent by the answer

to reach the client. This is due to unpredictable latency in

network equipment, specially when collisions take place and

the number of the devices involved increases. The second main

source of error is due to the variable time gap between the

instant the time stamp is registered in the datagram and the

real instant the datagram leaves or reaches the host. In typical

software implementation, these time stamps are registered

by client/server software running as a user level application

(Fig. 2) so the time stamp error will depend on the time spent

processing the datagram as it goes through the protocol stack

and software layers. This error will largely depend on system

load, detailed software implementation, etc. The precision of

the NTP synchronization can be largely improved by doing the

time-stamping operation in lower layers [5], therefore some

operating system kernels like Linux of FreeBSD support NTP

processing in the kernel [6]. This way, precision may reach

some tens of microseconds.

The highest precision in the time-stamping operation is only

achievable if done by the Ethernet device hardware as soon as

the packets arrive or leave the interface.

III. SYSTEM SPECIFICATION

The main objective of this contribution is to build cost-

effective, autonomous, compact and highly accurate SNTP

client and server modules suitable for, but not limited to, IEC

61850 environments. The SNTP server will use a standard

GPS receiver as a time reference. It will use the PPS (Pulse Per

Second) signal and NMEA data from the GPS to synchronize

its internal clock. The SNTP client will synchronize with the

server through the local area network using the NTP proto-

col, and will provide a PPS signal and NMEA information

Fig. 2. Layers where NTP can be implemented.

through a serial interface thus emulating a GPS receiver. A

typical scenario is depicted in Fig. 3 where the server (H-

SNTPD) gathers the time from the GPS receiver and clients

(H-SNTPC) provide time and synchronization information to

remote terminal units (RTU).

More specifically, the SNTP client should meet the follow-

ing criteria:

• The client will operate in a standard 10/100/1000MHz

Ethernet LAN.

• The client will configure automatically using the BOOTP

[7] protocol so that the configuration for all the clients

can be centralized in a single BOOTP server.

• The precision of the local clock at the client should be

within 10 with respect to the server’s clock in optimal

conditions: hardware time-stamping in the server and

direct LAN connection without switches. In typical con-

ditions (software server and standard switch connection)

precision should be always within 1 .

• The whole client design should fit in a single, low density

FPGA chip and should need no additional hardware, so

that cost of system parts will be under $20 before mass

production.

• Low power. Implemented in a low density, low frequency

FPGA, the client will consume under 1W of average

power which is much lower than a computer-based im-

plementation that would consume about 100W.

IV. DESIGN AND IMPLEMENTATION

In this section, the most important aspects of design and

implementation are commented. A diagram of the modules

that form the SNTP client is shown in Fig. 4. We can

distinguish the following parts: control unit, Ethernet MAC

controller, SNTP client module and PPS generation and RMC

frame transmission module. Next, we will briefly explain the

functionality of each one of these subsystems.

The control unit is in charge of arbitrating the operation of

the rest of the modules in order to perform the adequate task

in each moment. The module has been modeled as a Finite

State Machine using Verilog coding according to the structure

XV Workshop Iberchip, Buenos Aires - Argentina, 25 - 27 de Marzo de 2009

505

Fig. 3. Typical scenario for deploying hardware SNTP client and servers.

Fig. 4. Block diagram of the SNTP client.

described in [8]. The control unit defines two main operating

modes:

1) Configuration. When the SNTP client starts to operate

or after a system reset, an automatic configuration pro-

cess is performed according to the Bootstrap Protocol

(BOOTP) [7]. This process consists of finding the SNTP

client IP address and a series of configuration parameters

like the RS-232 serial port baudrate. The use of BOOTP

is due to the its simplicity compared to DHCP [9] which

makes it more suitable to be implemented in hardware,

while the extended capabilities of DHCP are not useful

for the intended application and would only introduce

extra development and resource costs.

2) Normal operation. Once the configuration process has

finished, the SNTP client begins to work into the normal

operation mode. In this mode, the device carries out

different tasks which we are going to summarize next.

Firstly, the SNTP client needs to know the SNTP server

IP address. In this way, the client sends a request to

a broadcast address (manycast mode) and expects a

reply from one or more servers. The client uses the

first reply received to establish the particular server for

XV Workshop Iberchip, Buenos Aires - Argentina, 25 - 27 de Marzo de 2009

506

subsequent unicast request. Once the client knows the

SNTP server IP address, it is necessary to find out the

SNTP server MAC address; so the client includes a sim-

ple implementation of the Address Resolution Protocol

(ARP) [10]; as well, the client must be able to send a

ARP reply packet whenever another device requests its

MAC address. Secondly, the client must transmit a time

request packet (SNTP message) at secondly intervals.

Finally, when the SNTP client receives the time reply

packet, the timestamps obtained are registered so that

the SNTP client module can synchronize the local clock.

The Ethernet MAC controller is in charge of controlling a

standard Fast Ethernet PHY device, allowing us to transmit and

receive Ethernet frames conforming to IEEE 802.3 specifica-

tion. The implementation of this module has been carried out

using the Tri-mode Ethernet MAC IP-core available from the

OpenCores project in its web portal opencores.org. Moreover,

this IP-core has a FIFO interface to user applications which

facilitates the SNTP client design.
The user interface has been developed according to the spec-

ification document [11]. This interface has been implemented

as a finite state machine coded in Verilog, and is formed

by a transmitter module and a receiver module. So, on one

hand, the transmitter module is able to transmit three different

Ethernet frames: BOOTP Request, ARP Request/Reply and

time request packets, which are stored in a RAM. This module

also includes a memory updating component that is in charge

of updating the different packet fields before transmitting

them. On the other hand, the receiver module is able to identify

the following frames: BOOTP Reply, ARP Request/Reply and

time reply packets, ruling out the rest of Ethernet frames.
The SNTP client module is in charge of calculating the

clock offset using the timestamps and synchronizing the local

time. Additionally, a drift control is carried out in order to

improve the local clock accuracy. This component has been

developed using the System Level tool System Generator for

DSP according to the methodology presented in [12].
Finally, the PPS generation and RMC frame transmission

module is in charge of generating a synchronization signal

(PPS+NMEA) which will be sent through the serial port

to a Remote Terminal Unit. To implement this module the

same methodology used to build the SNTP client module has

been employed. A block diagram of the module is shown on

Fig. 5. The main tasks developed with this subsystem are:

NTP format conversion, basic UART interface and a controller

module, mainly build with the Picoblaze microprocessor, with

some added components designed in sinthesizable VHDL and

implemented in the FPGA. A brief description of each of these

blocks follows.
Firstly, the time format conversion module, takes the date in

NTP format (64 bits, 32 for seconds and 32 for fractions) and

outputs the date format DD/MM/YY and HH:MM:SS, as will

be required for the NMEA line later. This task is completely

build with a sinthesizable VHDL block attached, designed as a

Finite State Machine implementation and some extra logic like

adders and dividers cores. The output is interfaced to Picoblaze

through the input ports multiplexer, which will read the data

as it’s needed.

Secondly, the initial specifications for the external serial

interface, were:

• Fixed data output format, ”8N1” (8 data bits, 1 stop bit

and no parity).

• Communication through TX and RX signals, no other

signaling needed.

• No flow control.

The design of this simple UART controller was acomplished

and later a few other features were included to make it more

flexible. For example:

• Baudrate online reconfiguration: for this concerns, a

baudrate generator is included in the design in order to

be able to program the desired baudrate of the serial

trasmission. The default baudrate was fixed to 4800

bauds.

• PPS signal generation: this output was connected to the

DSR output pin of the RS232 port.

Also, the center block integrates the Picoblaze soft-core

microprocessor, with its ROM memory where the application

program is loaded. This is the main controller of the system

and interfaces to the others described subsystems with its input

and output ports. It builds and sends the NMEA RMC sentence

based on the data received and also calculates the global check-

sum (that’s basically the XOR operation on the characters sent)

for its inclusion at the end of the line transmission.

The serial interface has a 16 bytes FIFO for the tx-queue.

In order to interface with the Picoblaze micro, two of the

status signals are used, buffer full and buffer half full, so the

processor checks its status periodically to control the flow of

characters.

Finally, the program running on the Picoblaze is designed in

assembler code, and it includes two main subroutines: first, to

control the transmission FIFO of the UART in order to achieve

a fluent communication; second, to send each one of the

ASCII characters previously computed and keep the checksum

updated at the same time. On the other hand, main program

first waits an active event of the PPS signal to start the sending

process, where it should check if the synchronization was

accomplished, as the RMC sentence differs in each case. Later,

it converts the decimal digits (coming from the input ports)

to ASCII characters. The checksum value at the end of the

sentence also needs a conversion to hexadecimal characters.

V. RESULTS

In this section, simulation and hardware implementation

results are described in some detail.

A. Simulation results

In order to check that the designs works correctly, the

following simulation process has been carried out. At the

first stage, the design has been verified using Simulink and

ModelSim. For the generation of the input stimuli, the Source

Blockset of Simulink has been employed. At the second stage,

XV Workshop Iberchip, Buenos Aires - Argentina, 25 - 27 de Marzo de 2009

507

Fig. 5. Block diagram of the PPS generation and RMC frame transmission module.

TABLE I
HARDWARE IMPLEMENTATION RESULTS ON SPARTAN-3E XC3S500E.

Figure of merit Usage (%)
Slices 3,411 (73%)

Slice Flip Flops 3,651 (39%)
4 input LUTs 4,493 (48%)
Bonded IOBs 37 (15%)
Block RAMs 9 (45%)
GCLKs 8 (33%)

Maximum operation frequency 43 MHz

we have used the Xilinx tool ChipScope Pro to perform the

on-chip verification of the client. In this way, we have verified

the correct transmission and reception of the different packet

types: BOOTP, ARP, and SNTP messages. In relation with the

scenario depicted in Fig. 3, the client has been tested against a

software NTP server since the hardware SNTP server has not

been developed yet. Fig. 6 compares a PPS signal generated

by a GPS unit (top curve) to the PPS generated by the client.

Fig. 7 shows a sequence of NMEA traces generated by the

client. Synchronization accuracy is within 20 microseconds,

limited by the use of a software NTP server.

B. Hardware implementation results

In this subsection, hardware implementation results will be

presented. Specifically, two figures of merit will be analyzed:

hardware resources and maximum operation frequency.

The design has been implemented on a Spartan-3E

XC3S500E FPGA. The Table I shows the design results in

the current development stage. It is remarkable that although

the implementation is finished, an optimization process must

be carried out. Thus, the final resource requirements will be

reduced.

VI. CONCLUSION

The design of a SNTP client completely done in hardware

has been presented. By using a high level methodology and

standard FPGA technology it is possible to produce a high

accurate, cost-effective and flexible solution for accurate time

distribution and time stamping in industrial environments

that agrees with international standards. First prototypes are

expected to provide synchronization in the range of the mi-

crosecond in a compact and cheap device that would sub-

stitute expensive computer-based solutions or dedicated GPS

receivers.

ACKNOWLEDGMENT

This work has been partially supported by the Ministry of

Education and Culture of the Spanish Government through the

TEC2007-61802/MIC (HIPER) project and the PROFIT-MITC

SEPIC TSI-020100-2008-258 project.

REFERENCES

[1] I. E. C. Technical Committee 57, “IEC 61850 Communication Networks
and Systems In Substations,” IEC 61850 Edition 2 and other extensions,
Jun. 2008.

[2] D. L. Mills, “Simple Network Time Protocol (SNTP) Version 4 for
IPv4, IPv6 and OSI,” RFC 4330 (Informational), Jan. 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4330.txt

[3] D. L. Mills, “Network Time Protocol (Version 3) Specification,
Implementation and Analysis,” RFC 1305 (Draft Standard), Mar. 1992.
[Online]. Available: http://www.ietf.org/rfc/rfc1305.txt

[4] Telvent Company Web Portal. http://www.telvent.com.
[5] T. Skeie, S. Johannessen, and O. Holmeide, “Highly accurate time

synchronization over switched Ethernet,” in Proc. 8th IEEE International
Conference on Emerging Technologies and Factory Automation #ETFA),
vol. 1, Antibes-Juan les Pins (France), Oct. 2001, pp. 195–204.

[6] D. L. Mills and P. H. Kamp, “The nanokernel,” in Proc. Precision Time
and Time Interval #PTTI) Applications and Planning Meeting, Reston
VA (USA), Nov. 2000, pp. 423–430.

[7] W. J. Croft and J. Gilmore, “Bootstrap Protocol,” RFC 951 (Draft
Standard), Sep. 1985, updated by RFCs 1395, 1497, 1532, 1542.
[Online]. Available: http://www.ietf.org/rfc/rfc951.txt

[8] C. E. Cummings, “The Fundamentals of Efficient Synthesizable Finite
State Machine Design using NC-Verilog and BuildGates,” in Inter-

national Cadence Usergroup conference #ICU), San Jose, California
(USA), Sep. 2002.

[9] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131 (Draft
Standard), Mar. 1997, updated by RFCs 3396, 4361. [Online].
Available: http://www.ietf.org/rfc/rfc2131.txt

XV Workshop Iberchip, Buenos Aires - Argentina, 25 - 27 de Marzo de 2009

508

Fig. 6. PPS signal generates by the SNTP client designed.

Fig. 7. NMEA RMC frame generated.

[10] D. Plummer, “Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmission
on Ethernet Hardware,” RFC 826 (Standard), Nov. 1982, updated by
RFC 5227. [Online]. Available: http://www.ietf.org/rfc/rfc826.txt

[11] J. Gao, 10 100 1000 Mbps Tri-mode Ethernet MAC Specification,
OPENCORES.ORG, Jan. 2006.

[12] J. Viejo, M. J. Bellido, A. Millan, E. Ostua, J. Juan, P. Ruiz-de Clavijo,
and D. Guerrero, “Efficient Design and Implementation on FPGA of
a MicroBlaze Peripheral for Processing Direct Electrical Networks
Measurements,” in Proc. 1st IEEE Symposium on Industrial Embedded

Systems #IES), Antibes-Juan les Pins (France), Oct. 2006, pp. 1–7.

XV Workshop Iberchip, Buenos Aires - Argentina, 25 - 27 de Marzo de 2009

509

