
SIES 2010 Proceedings
IEEE Catalog Number: CFP10INB-USB

ISBN: 978-1-4244-5840-0

14:00 -
16:00

Methodology (Work-in-Progress, poster session, Chair: Roberto
Passerone)

"Compositional Translation of Simulink Models into Synchronous BIP"
(papers/TF-000353.pdf)

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga, Joseph
Sifakis

"Design and Implementation of a WirelessHART Simulator for Process
Control" (papers/TF-000418.pdf)

Kunjesh Shah, Tiberiu Seceleanu, Mikael Gidlund

"L2 Cache Modeling based on address modification for Native
Co-Simulation in SystemC" (papers/TF-000493.pdf)

Sara Real, Hector Posadas, Eugenio Villar

"A Design Flow for Critical Embedded Systems" (papers/TF-000965.pdf)

Vincent Lefftz, Jean Bertrand, Hugues Cassé, Christophe Clienti, Philippe
Coussy, Laurent Maillet-Contoz, Philippe Mercier, Pierre Moreau,
Laurence Pierre, Emmanuel Vaumorin

"Design and implementation of a suitable core for on-chip long-term
verification" (papers/TF-001007.pdf)

Julian Viejo, Jose Ignacio Villar, Jorge Juan, Alejandro Millan, Manuel
Jesus Bellido, Enrique Ostua

Design and implementation of a suitable core for

on-chip long-term verification

J. Viejo, J. I. Villar, J. Juan, A. Millan, M. J. Bellido, and E. Ostua

Grupo ID2 (Investigacion y Desarrollo Digital)

Departamento de Tecnologia Electronica-Universidad de Sevilla

E. T. S. Ing. Informatica, Campus Universitario Reina Mercedes

41012 Sevilla (SPAIN)

Email: {julian,jose,jjchico}@dte.us.es, amillan@us.es, {bellido,ostua}@dte.us.es

Abstract—Traditional on-chip and off-chip logic analyzers
present important shortcomings when used for the long-term
verification of industrial embedded systems, forcing the designer
to implement ad-hoc verification solutions. This contribution
presents a suitable solution for long-term verification of FPGA-

based designs consisting on a verification core that uses the
Picoblaze microcontroller, dedicated logic and a serial port
communication in order to monitor the internal signals of the
system in a continuous way. The core design focuses on low
resource requirements and reusability and has been successfully
applied to the verification of a real industrial synchronization
platform showing remarkable advantages over commercial on-
chip solutions like Xilinx’s ChipScope Pro.

I. INTRODUCTION

Over the past decade, FPGAs has become the major imple-

mentation technology for industrial embedded digital systems

due to its fast prototyping, short time-to-market and increasing

capabilities. The always reducing cost of FPGAs make them

suitable not only during the prototype phase but also for low

and medium volume production. The re-programmability of

FPGA chips is also very valuable during the design and pro-

duction phases of the system allowing for easier verification,

debugging and support of the systems.

FPGA verification can be done by simulation and hardware

execution [1]–[3]. Simulation is specially useful during the

first stages of the design flow to assure the correct operation

of the systems. But there are scenarios where simulation is not

a feasible approach, like the verification of a whole complex

system, because the simulation time would be extremely huge

and/or computational resources may be exhausted. In this

cases, hardware execution is an interesting alternative derived

from the re-programmable nature of FPGAs that permits the

observation of the design under study in real time during

its operation. Such observations are taken in several ways

including external and on-chip logic analyzers. On-chip logic

analyzers like Chipscope [4] are able to acquire data at a

very high frequency and store the results in memory for

later processing, so data acquisition is limited by the storage

resources available in the chip [5], [6].

While the above mentioned limitation is not a serious

problem for the verification of many types of systems, it

is important to note that on-chip logic analyzers share the

resources with the system under test and may consume an

important part of the area available, requiring significantly

more resources during verification than in the final production

system.

A special case is the verification of the correct long-term

operation of a system. This is specially useful to test the

robustness of the implementation in industrial aggressive envi-

ronments where systems are supposed to operate continuously

for months or years. In this case, the collection of data from

internal signals over a long period of time should be possible.

These data should be communicated to the outside of the

chip in order to avoid large internal storage resources (that

would be exhausted over time) and to allow for the continuous

monitoring of the system.

Neither on-chip or off-chip solutions fit well to do this kind

of long-term verification so designers typically have to develop

custom solutions (test logic and tools) for each design. A good

example is a network synchronization system remote terminal

units previously developed by the authors [7] where internal

data need be collected every few seconds for a period of days

or even months.

This contribution presents a more general solution for long-

term verification of digital systems implemented on FPGA

that can be adapted to several problems to avoid the cost

of designing custom verification logic. The proposed solution

takes the form of a test core based on the Picoblaze micro-

controller and associated tools that can greatly facilitates long

term verification of complex systems with minimal resources

or external equipment requirements when compared to on-chip

or off-chip logic analyzers.

The paper is organized as follows: in section two an outline

of common verification tools is presented from the point

of view of their applicability to scattered event acquisition

and analysis, section three describes the architecture of the

proposed long-term on-chip data acquisition core, in section

four the proposed solution and the commercial ChipScope Pro

test system are compared against a real application and, finally,

section five summarizes the most relevant conclusions derived

from this experience.

II. CURRENT SOLUTIONS FOR SYSTEM VERIFICATION

Currently there are three main types of solutions when

approaching digital system verification: standalone logic ana-

978-1-4244-5840-0/10/$26.00 ©2010 IEEE 234 SIES 2010

lyzers, on-chip logic analyzers and custom cores for specific

purposes. In this section we will highlight the main features,

advantages and disadvantages of each one from the perspective

of their applicability to long-term verification.

Standalone Logic Analyzers (SLAs) are very powerful tools

for debugging an already implemented design. This kind of

equipment is able to acquire data at a very high frequency

from any signal that can be accessed at the pins of the chip.

Moreover, they may have a large number of channels (100

or more) that makes them a very useful tool for debugging

high speed buses and signals between components. The main

disadvantage of SLAs is that they cannot reach signals inside

the design. To overcome this issue, designs are modified in

order to route the desired signals to external pins accessible

by the SLA thus modifying the characeristics and timing

parameters of the original design.

An evolution of SLAs are On-chip Logic Analyzers (OLAs)

like Xilinx’s ChipScope, that have become very popular in

the field of programmable logic. This kind of analyzers are

hardware components that connect to the desired signals inside

the chip and communicate over a standard bus (usually RS232

or JTAG) with a computer that executes software for data

analysis. These components are an intrusive solution since the

verified design is different from the production design when

analysis components are removed.

These two types of verification tools have a common

denominator: the limit of the capture size is given by the size

of the storage memory since they store a complete capture

frame before sending it to the processing unit.

Some tests require to capture some kind of events from

within the system continuously. To capture these events, de-

velopers usually create custom debugging cores (CDCs) for

every specific purpose when SLAs or OLAs do not fulfill the

verification requirements [8], [9].

III. LOGICAL EVENT ANALYZER

A. Architecture of the Logical Event Analyzer designed

To overcome the cost of designing a CDC for every ap-

plication, we propose a general purpose device, the Logical

Event Analyzer (LEA), that can fill the gap between SLA

and OLA and substitute CDC in several practical cases. As

it can be observed in Fig. 1, SLAs and OLAs are used to

verify high-speed systems where the number of samples is not

a critical aspect. However, LEA can be used for debugging

systems where it is necessary to capture a large number of

samples spaced in the time. The LEA also features a much

lower footprint than an OLA.

The architecture of the proposed analyzer is based on the

PicoBlaze microprocessor from Xilinx [10]. Fig. 2 shows

the block diagram of the designed analyzer. As it can be

observed from the diagram, a set of input ports of PicoBlaze

are reserved for trigger, clock and communication control

signals. The remaining ports are dedicated to capturing data

signals. PicoBlaze allows for the addressing of 256 8-bit ports.

Thus, using a single PicoBlaze module and dedicating N

ports to trigger, clock and control signals the analyzer can

�

� ��
�
�
�
�
�
�
	

�
�
�

�

����
�������
������	��������

Fig. 1. Field of applicability of several verification solutions.

����������	
����� �������

���

��
������

��	�����������

�
����
����������

����������

�����

������� ���

Fig. 2. Architecture of the designed analyzer.

capture (256−N)× 8 bit signals. If it is necessary to capture
more signals a simple solution is to add an external n bits

register to extend the port selection signal port id. By using

this alternative, the maximum number of signals that can be

sampled would be (256 − N) × 2n ∗ 8. The number of data
signals that can be acquired is also limited by the rate at which

captured data can be transmitted out of chip as we will discuss

later.

PicoBlaze uses one of their output ports to communicate

with an UART that is in charge of transmitting the captured

data via serial. The UART has a half full buffer signal which

indicates that the FIFO is half full, and its baud rate can be

set as needed. PicoBlaze will use the half full buffer signal

to control the data transmission to the UART. Assuming the

following UART configuration: fixed data format ”8N1” (8

data bits, 1 stop bit and no parity), communication through the

RX and TX signals (no other signals needed), and flow control

disabled, the maximum bit rate (bps) that can be obtained is

calculated according to (1).

BitRate =
BaudRate ∗ 8

10
(1)

Finally, the program module corresponds to the program that

will be run by PicoBlaze. This program performs the following

tasks:

1) Trigger condition verification. PicoBlaze reads the ports

assigned to the trigger signals and applies the configured

logical function. In the case this condition is verified,

978-1-4244-5840-0/10/$26.00 ©2010 IEEE 235 SIES 2010

data acquisition begins.

2) Data acquisition according to the clock signal. The clock

signal corresponds to an event of the designed system,

so that whenever this event occurs PicoBlaze starts to

read the data connected to the input ports.

3) Data processing and transmission. This processing con-

sists of calculating a checksum of the transmitted data

so that the receiver can verify the correct reception of

information. Data will be sent to the UART.

4) Communication control. Periodically, the microproces-

sor will check the status of half full buffer signal. If it

is active PicoBlaze will wait for the FIFO to becomes

half empty before sending more data.

IV. APPLICATION EXAMPLE AND RESULTS

In this section we describe the application of the LEA to

the on-chip verification of a SNTP client and server fully

implemented in hardware. SNTP is a simplified version of

the more general Network Time Protocol (NTP) [11] that

is commonly used for synchronizing the clocks of computer

systems over data networks such as the Internet. The operation

of this protocol is to send periodic time requests to a server

synchronized with an accurate time source like a GPS receiver

at request intervals that can vary from a few seconds to several

minutes. When the server reply is received, the client uses a

set of timestamps to calculate the round trip time and the time

offset between the client’s and server’s clocks.

The client can then adjust its local clock based on these

calculations. In a typical scenario, the client will be accurately

synchronized to the server only after several request-response

cycles. Since the time between requests can vary from a few

seconds to several minutes the most important aspect in the

testing analysis of these systems is not the speed at which

samples are acquired but to capture a large number of system

events, covering a wide time interval.

On-chip verification tools like ChipScope Pro feature high

frequency sampling which allow the testing of high-speed

buses and systems, but they face some limitations regarding

the maximum number of samples that can be obtained from

the system. This is mainly due to: 1) internal resources of the

FPGA are used to store the samples, and 2) some of these

resources, depending on the type of programmable device

used, are often limited. The number of LUTs, FFs and BRAMs

used by ChipScope depending on the number of signals and

the number of samples are shown in Figures 3, 4, and 5,

respectively. As it can be observed from Figures 3 and 4, LUTs

and FFs depend mainly on the number of signals. However,

Figure 5 shows that the main problem when performing

on-chip verification using such tools is that the number of

BRAMs used is directly proportional the number of signals

and the number of samples. Furthermore, an additional BRAM

must be included for each added Integrated Logic Analyzer

(ILA) since each ILA only can capture a maximun of 256

signals. The total number of BRAMs is calculated according

to (2). Thus, considering that BRAMs are the most limited

resource and fixing a number of signals to capture, this type

512
1024

2048
4096

8192
16384

32
64

128
256

512

0

500

1000

1500

2000

Number of signalsNumber of samples

N
u

m
b

e
r

o
f

L
U

T
s

Fig. 3. Number of LUTs dependency on number of signal and samples using
ChipScope.

512
1024

2048
4096

8192
16384

32
64

128
256

512

0

500

1000

1500

Number of signalsNumber of samples

N
u

m
b

e
r

o
f

F
F

s

Fig. 4. Number of FFs dependency on number of signal and samples using
ChipScope.

512
1024

2048
4096

8192
16384

32
64

128
256

512

0

200

400

600

Number of signalsNumber of samples

N
u

m
b

e
r

o
f

B
R

A
M

s

Fig. 5. Number of BRAMs dependency on number of signal and samples
using ChipScope.

of simulation is unfeasible if the goal is to capture a large

number of samples.

NumBRAMs =

∣

∣

∣

∣

NumSignals×NumSamples

BRAMsize(bits)

∣

∣

∣

∣

+

+NumILAs (2)

For the case under discussion, the SNTP client and

server have been implemented on a Spartan-3E FPGA device

(xc3s500e). These FPGAs have a total of 20 BRAMs and each

978-1-4244-5840-0/10/$26.00 ©2010 IEEE 236 SIES 2010

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

100

120

Number of samples

R
e

s
o

u
rc

e
s
 u

s
e

d
 (

%
)

LUTs

FFs

BRAMs

Fig. 6. Percentage of used resources dependency on the number of samples
for 256 signals using ChipScope.

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Number of signals

R
e

s
o

u
rc

e
s
 u

s
e

d
 (

%
)

LUTs

FFs

Slices

BRAMs

Fig. 7. Percentage of used resources dependency on the number of signals
using LEA.

block contains 18, 432 bits of fast static RAM, with 16 Kbit

allocated for data storage. For each design a total of 256

signals have been sampled: timestamps (least significant part),

time offset, round trip time and adjustment parameter of the

local clock. With this configuration, the percentage of used

resources (LUTs, FFs and BRAMs) to verify the system in

terms of number of samples is shown in Figure 6. As shown

in that figure, the LUT and FF usage is not critical, since it

is a 9% and 8% respectively of total resources in the worst

case. However, there is an excessive use of BRAMs even for

a small number of samples. A maximum of 1024 samples can

be captured which is insufficient for the type of system that

is intended to verify.

The developed LEA has the advantage that it does not store

data in BRAM but transmits them via serial. Therefore the

number of BRAMs used to verify the system does not depend

on the number of signals or the number of samples so the

system can be tested indefinitely, only limited by external

resources. For the rest of the FPGA resources, they become

solely dependent on the number of signals (Fig. 7). For the

same scenario presented for ChipScope (sampling of 256

signals) the percentage used of LUTs, FFs, Slices and BRAMs

has been 3,79%, 1,68%, 5,35% and 5% respectively. It is worth

noting that only a BRAM is used (this memory stores the

program that will be run by PicoBlaze).

V. CONCLUSION

In this contribution, a verification core based on Picoblaze

for long-term on-chip verification is presented. The proposed

solution allow developers to avoid the implementation of

custom verification cores in many cases, greatly improving

the design and verification time.

The proposed solution has been compared to ChipScope

Pro on-chip logic analyzer in the verification of a real syn-

chronization system. The results show that the ChipScope Pro

tool is not suitable to verify the system because this would

need excessive internal resources to store the captured data

even for a small number of samples to acquire. The proposed

core does not store data using internal resources but transmits

them via serial port, so the system can be verified indefinitely,

only limited by external computer storage.

Future work involves the replacement of PicoBlaze with an

open source multivendor microcontroller, the development of

a high speed interface to wider the range of applications and

the study of more complex and flexible triggering possibilities.

ACKNOWLEDGMENT

This work has been partially supported by the Ministry of

Education and Culture of the Spanish Government through the

TEC2007-61802/MIC (HIPER) project and the PROFIT-MITC

SEPIC TSI-020100-2008-258 project.

REFERENCES

[1] T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, “Using Design-
Level Scan to Improve Design Observability and Controllability for
Functional Verification of FPGAs,” in 2001 Proceedings International
Conference on Field-Programmable Logic and Applications (FPL),
Belfast, Northern Ireland (UK), Aug. 2001, pp. 483–492.

[2] P. S. Graham, “Logical Hardware Debuggers for FPGA-Based Systems,”
Bringham Young University, Department of Electrical and Computer
Engineering, PhD Dissertation, 2001.

[3] N. Ohba and K. Takano, “Hardware debugging method based on signal
transitions and transactions,” in IEEE Proc Asia and South Pacific conf
on Design Automation, Yokohama (Japan), Jan. 2006, pp. 454–459.

[4] Xilinx, ChipScope Pro 11.1 Software and Cores User Guide. Xilinx,
Inc., Apr. 2009.

[5] K. Arshak, E. Jafer, and C. Ibala, “Testing FPGA based digital system
using XILINX ChipScopeTM logic analyzer,” in 29th International
Spring Seminar on Electronics Technology (ISSE), St. Marienthal (Ger-
many), May 2006, pp. 355–360.

[6] L. Ehrenpreis, P. Ellervee, and K. Tammemae, “Open Source On-Chip
Logic Analyzer for FPGAs,” in 2006 International Baltic Electronics
Conference, Tallinn (Estonia), Oct. 2006, pp. 1–4.

[7] J. Viejo, J. Juan, M. J. Bellido, E. Ostua, A. Millan, P. Ruiz-de Clavijo,
A. Muñoz, and D. Guerrero, “Design and implementation of a SNTP
client on FPGA,” in Proc. 2008 IEEE International Symposium on
Industrial Electronics (ISIE), Cambridge (United Kingdom), Jun. 2008,
pp. 1971–1975.

[8] T.-Y. Lee, Y.-H. Fan, S.-C. Yen, C.-C. Tsai, and R.-S. Hsiao, “An
Integrated Functional Verification Tool for FPGA Systems,” in Interna-
tional Conference on Innovative Computing, Information and Control,
Kumamoto (Japan), Sep. 2007, p. 203.

[9] G. Knittel, S. Mayer, and C. Rothlaender, “Integrating Logic Analyzer
Functionality into VHDL Designs,” in 2008 International Conference on
Reconfigurable Computing and FPGAs, Cancun (Mexico), Dec. 2008,
pp. 127–132.

[10] K. Chapman, PicoBlaze 8-Bit Embedded Microcontroller User Guide
for Spartan-3, Virtex-II and Virtex-II PRO FPGAs. Xilinx, Inc., Nov.
2005.

[11] D. L. Mills, “Network Time Protocol (Version 3) Specification,
Implementation and Analysis,” RFC 1305 (Draft Standard), Mar. 1992.
[Online]. Available: http://www.ietf.org/rfc/rfc1305.txt

978-1-4244-5840-0/10/$26.00 ©2010 IEEE 237 SIES 2010

