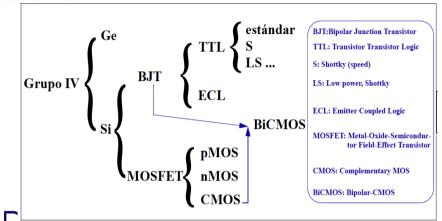
Circuitos Electrónicos Digitales Práctica 2 "Familias lógicas"

Grado en Ingeniería Informática: Ingeniería del Software 2010/2011

Departamento de Tecnología Electrónica – Universidad de Sevilla


Objetivos

- · Montar un primer circuito lógico con puertas
- Comprobación lógica de su funcionamiento
- Caracterización de puertas a nivel temporal y eléctrico, aprendiendo a medir parámetros de conmutación

Familias lógicas

▶ Familia lógica: Conjunto de puertas con una determinada tecnología, que hace que los parámetros eléctrico-temporales de todas las puertas sean similares. Dentro de una familia, hay subfamilias.

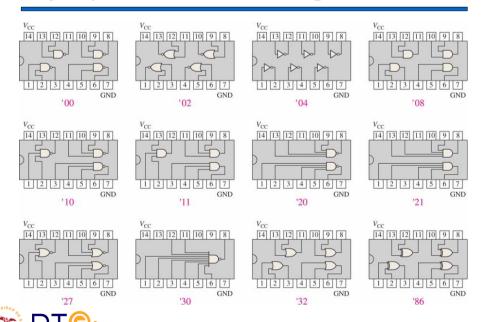
u i

Departamento de Tecnología Electrónica – Universidad de Sevilla

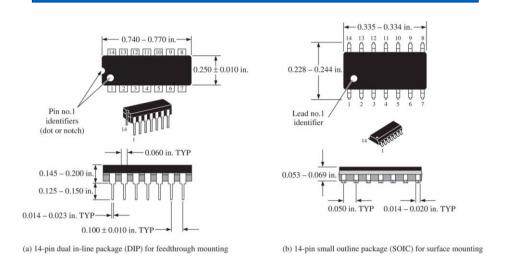
Familias lógicas

Comparación de familias.

Parámetro	TTL	ECL	CMOS
Inmunidad al ruido	Media-baja	Muy baja	Muy alta
Velocidad	Alta	Muy alta Media	
Densidad de integración	Media	Muy baja	Muy alta
Consumo de potencia	Medio	Muy alto	Muy bajo
Presencia actual	Bajando; aún es apreciable en SSI/MSI	Sólo en apli- caciones muy específicas	Muy alta en VLSI/ULSI

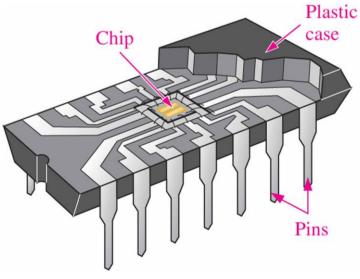

Parámetros de conmutación

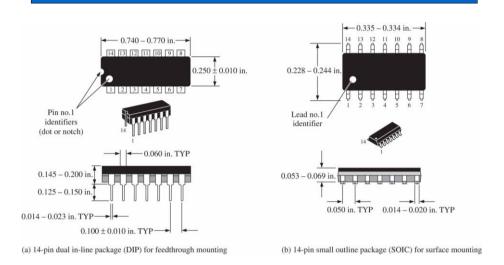
- Niveles lógicos "altos" y "bajos". Márgenes de ruido.
- Tiempos de propagación (retardo o retraso).
- Tiempos de transición (subida y bajada).
- Fan-in / Fan-out.
- Potencia consumida.



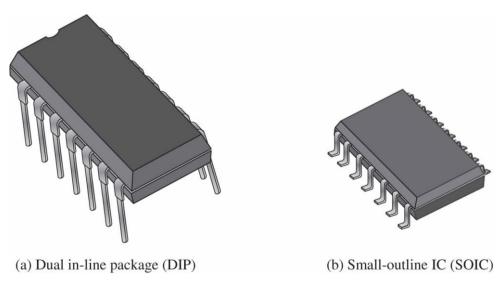
Departamento de Tecnología Electrónica – Universidad de Sevilla

Ejemplos de circuitos integrados (74XX)


Tipos de encapsulados de CI

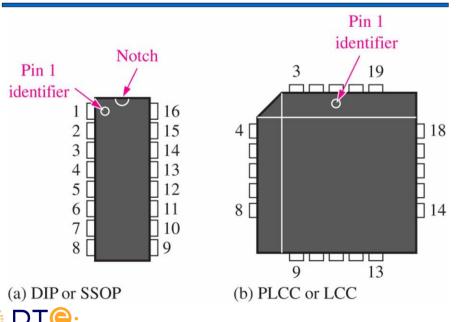

Departamento de Tecnología Electrónica – Universidad de Sevilla

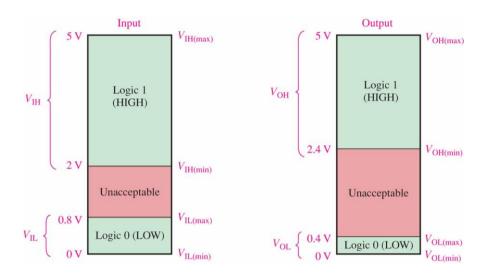
Circuito integrado encapsulado

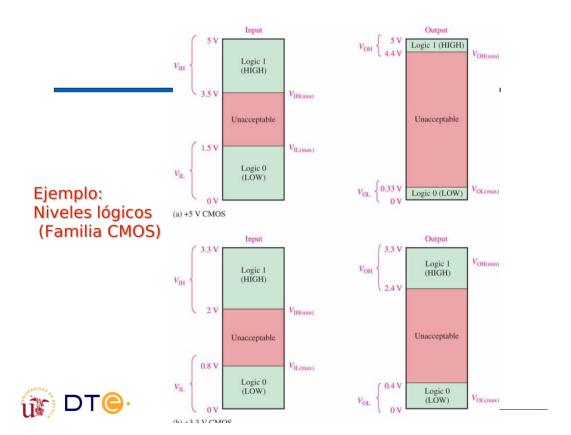

Tipos de encapsulados de CI

Departamento de Tecnología Electrónica – Universidad de Sevilla

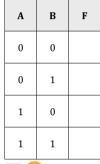
Tipos de encapsulados de CI (i)




Tipos de encapsulados de CI (ii)

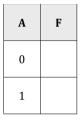

Enumeración de pines

Ejemplo: Niveles lógicos (Familia TTL)



Trabajo experimental: Caracterización lógica

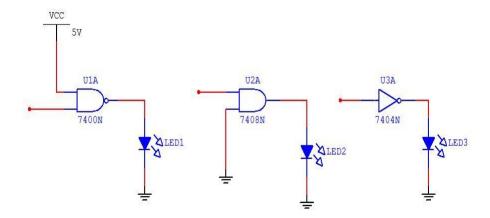
Apartado 1. Utilizando un LED a la salida de las puertas, caracterice, a nivel lógico, los circuitos integrados 7408, 7432, 7404


7408

7432

A	В	F
0	0	
0	1	
1	0	
1	1	

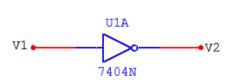
7404

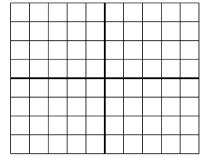


Departamento de Tecnología Electrónica – Universidad de Sevilla

Trabajo experimental: Caracterización lógica

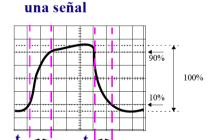
Apartado 1. (montaje experimental)





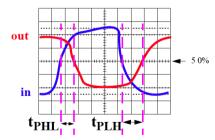
Trabajo experimental: Formas de onda

Apartado 2 Excite un inversor (7404) con una señal cuadrada entre 0v y 5v de 100KHz. Visualice en el osciloscopio V1 y V2


Escala de tiempo: _____ Escala de tensión: ____

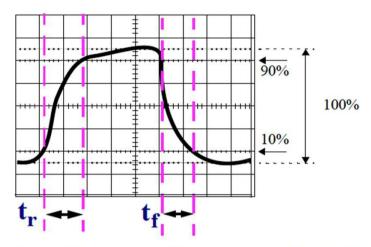
Departamento de Tecnología Electrónica – Universidad de Sevilla

Parámetros de conmutación

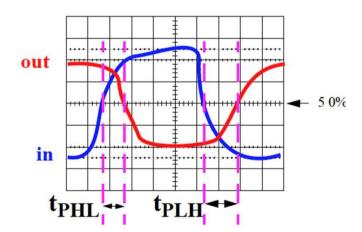

Tiempos de transición y propagación

Transiciones en

 t_r o t_{LH} : Tiempo de subida ($\it rise$) o de L hacia H t_f o t_{HL} : Tiempo de bajada ($\it fall$) o de H hacia L


Propagación por una puerta

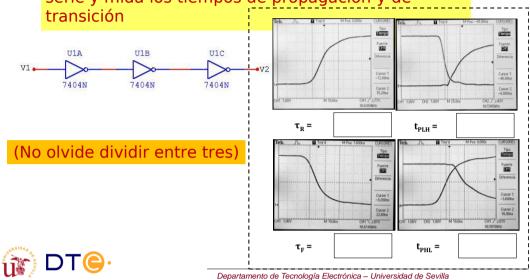
 $\mathbf{t_{PXX}}$: Es el tiempo de Propagación o de retraso (delay: $\mathbf{t_d}$, δ , Δ , etc.)


Tiempos de transición

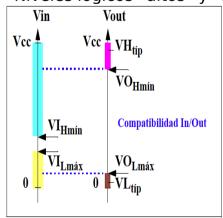
t_r o t_{LH}: Tiempo de subida (rise) o de L hacia H t_f o t_{HL}: Tiempo de bajada (fall) o de H hacia L

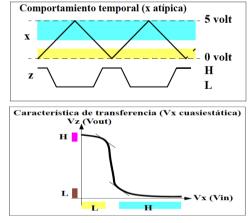
Departamento de Tecnología Electrónica – Universidad de Sevilla

Tiempos de propagación

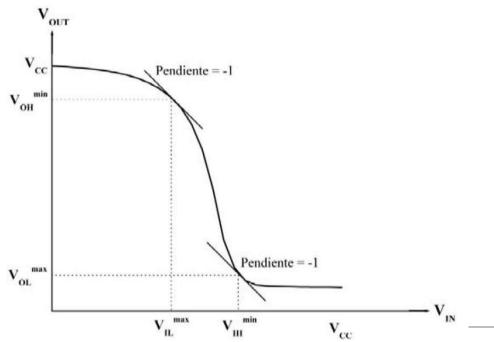

tpxx: Es el tiempo de Propagación o de retraso (delay: t_d , δ , Δ , etc.)

Trabajo experimental: Caracterización temporal



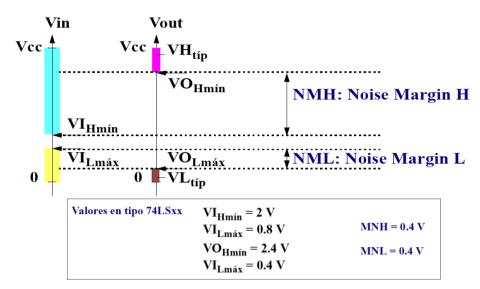

Apartado 3. Monte ahora varios inversores en serie y mida los tiempos de propagación y de transición

Parámetros de conmutación


Niveles lógicos "altos" y "bajos". Márgenes de ruido.

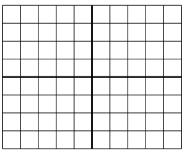


Medida experimental de tensiones umbrales

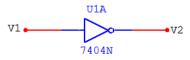


Márgenes de ruido

Ejemplo: márgenes de ruido TTL



Departamento de Tecnología Electrónica – Universidad de Sevilla


Trabajo experimental: Caracterización eléctrica

Apartado 4. Excite un inversor con una señal sinusoidal entre 0V y 5V (f= 1kHz). Represente en el osciloscopio su función de transferencia y mida los parámetros que se indican:

Escala de tiempo: _____ Escala de tensión: _____

VOH: VOL: VIH: VIL: NMH: NML:

Comparación con las hojas de características técnicas (datasheets)

recommended operating conditions (see Note 3)

			SN5404			SN7404		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Co	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
OΠ	High-level output current			-0.4			-0.4	mA
loL	Low-level output current			16			16	mA
TA	Operating free-air temperature	-55		125	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS‡		SN5404			SN7404				
			MIN	TYP§	MAX	MIN	TYP§	MAX	UNIT	
	V _{CC} = MIN,	$I_{\parallel} = -12 \text{ mA}$				-1.5			15	V
Voн	V _{CC} = MIN,	V _{IL} = 0.8 V,	$I_{OH} = -0.4 \text{ mA}$	2.4	3.4		2.4	3.4		V
VOL	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
Чн	V _{CC} = MAX,	V _I = 2.4 V				40			40	μΑ
Iμ	V _{CC} = MAX,	V _I = 0.4 ∨				-1.6			-1.6	mA
los¶	V _{CC} = MAX			-20		-55	-18		-55	mA
Iссн	V _{CC} = MAX,	∨ _I = 0 ∨			6	12		6	12	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V		1	18	33		18	33	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

\$ All typical values are at V_{CC} = 5 V, T_A = 25°C. \$ Not more than one output should be shorted at a time.