Assignment 3

Exercise 1. Obtain the following functions in sum-of-minterms and product-of-maxterms form:
a) $f_{1}+f_{2}$
b) $f_{1} \cdot f_{2}$
c) $f_{1} \oplus f_{2}$
d) $\mathrm{f}_{1} \odot \mathrm{f}_{2}$
where $\mathrm{f} 1=\Pi(1,2,3,5,6,7,13,14,15)$ and $\mathrm{f} 2=\sum(0,4,8,9,10,14,15)$
Exercise 2. Using Karnaugh maps, obtain the minimum sum-of-products and product-of-sums expressions for the following functions:
a) $f(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum(0,4,6,7,10,12,13,14)$
b) $f(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Pi(3,5,7,11,13,15)$
c) $f(a, b, c, d)=\sum(1,2,5,6,9)+d(10,11,12,13,14,15)$
d) $f(a, b, c, d)=(a \bar{b}+c)(\overline{c d})+\overline{(b+\bar{d})}$

Exercise 3. Draw an optimal two-level combinational circuit (plus inverters) corresponding to the functions in sections b and c of the previous exercise. "Optimal" means using the minimum number of gates.

Exercise 4. We need to design a circuit that can compares two 2-bit numbers A (a1, a0) and B (b1, b0). The circuit should have three binary outputs G, E, L so that:

- $G=1$ if and only if $A>B$
- $E=1$ if and only if $A=B$
- $\mathrm{L}=1$ if and only if $\mathrm{A}<\mathrm{B}$

Design the required circuit using only NAND gates.
Exercise 5. A water tank has a sensor system that provides the water level in the tank with a number from 0 to 12 . This number is given as a 4 bit digital signal in natural binary code ($\mathrm{x}_{3}, \mathrm{x}_{2}, \mathrm{x}_{1}, \mathrm{x}_{0}$). Design a combinational circuit that takes ($\mathrm{x}_{3}, \mathrm{x}_{2}, \mathrm{x}_{1}, \mathrm{x}_{0}$) as inputs and generates an output signal ' z ' which is ' 1 ' when the tank level is equal or less than 5 and is ' 0 ' otherwise. Make an optimum design using only NOR gates.
Exercise 6. In the circuit depicted below all the gates have the same delay Δ.

a) Obtain a minimum sum-of-products expression for function f.
b) Obtain the truth table of f. ¿Can you figure out a possible application for f ?
c) Determine the waveform of f when $\mathrm{b}=\mathrm{d}=1$ and a and c change as depicted below. Comment the results.

