
Departamento de Tecnología Electrónica – Universidad de Sevilla

ApéndiceApéndice
 Lenguajes de descripción de hardware Lenguajes de descripción de hardware

Circuitos Electrónicos Digitales
E.T.S.I. Informática

Universidad de Sevilla

Jorge Juan <jjchico@dte.us.es> 2010-2018

Esta obra esta sujeta a la Licencia Reconocimiento-CompartirIgual 4.0 Internacional de Creative Commons. Para ver una
copia de esta licencia, visite http://creativecommons.org/licenses/by-sa/4.0/ o envíe una carta Creative Commons, PO Box
1866, Mountain View, CA 94042, USA.

Departamento de Tecnología Electrónica – Universidad de Sevilla

ContenidosContenidos

● Lenguajes de descripción de hardware
● Tipos de descripciones
● Estructura de una descripción Verilog
● Verilog: sintaxis y estructuras principales
● Banco de pruebas y simulación
● Síntesis desde LDH en FPGA
● Herramientas de diseño básicas

Departamento de Tecnología Electrónica – Universidad de Sevilla

BibliografíaBibliografía

● Lecturas recomendadas:
– Libro de LaMeres

● 5.1, 5.2, 5.3: introducción a los lenguajes de descripción de hardware y al flujo de
diseño digital moderno.

– Curso Verilog basado en ejemplos [https://gitlab.com/jjchico/curso-verilog.v]
● Unidad 1: introducción
● Unidad 2: bancos de prueba.
● Unidad 3: circuitos combinacionales.

● Referencia (consultar en caso de dudas):
– LaMeres 5.4 a 5.7: lenguaje Verilog, descripciones funcionales,

estructurales y primitivas lógicas.

– Verilog HDL Quick Reference Guide (Verilog-2001 standard)

https://gitlab.com/jjchico/curso-verilog.v

Departamento de Tecnología Electrónica – Universidad de Sevilla

¿como se diseñan los circuitos ¿como se diseñan los circuitos
integrados?integrados?

 SEG Code
 ORG $f000, 0
START:
 sei
 cld
 ldx #$00
Reset:
 lda #$00
.loopClear:
 sta $00,x

01111000
10100010
00000000
10101001
00000000
10010101
00000000

programa Pitfall

puerta NAND

código fuente Pitfall

compilador/
ensamblador

herramientas CAD?

Departamento de Tecnología Electrónica – Universidad de Sevilla

¿Qué son los lenguajes de descripción de ¿Qué son los lenguajes de descripción de
hardware (LDH)?hardware (LDH)?

● Lenguajes formales para especificar, simular, implementar y verificar
circuitos electrónicos.

● Aunque no son lenguajes de programación, su sintaxis es parecida.
● características notables:

– La mayoría de las expresiones se “ejecutan” concurrentemente.

– Cada expresión o “instrucción” corresponde a la operación de un bloque de
circuito.

// AND operation
x = a & b;

// OR operation
y = a | b;

// Combinational function z = xy' + x'y
z = x & ~y | ~x & y;

// AND operation
x = a & b;

// OR operation
y = a | b;

// Combinational function z = xy' + x'y
z = x & ~y | ~x & y;

Departamento de Tecnología Electrónica – Universidad de Sevilla

¿Por qué son útiles los LDH?¿Por qué son útiles los LDH?

● Simulación
– A partir de la descripción del circuito en un LDH es posible simular su

comportamiento con los valores de entrada que se deseen (vectores de test)
mediante herramientas informáticas (simuladores) para comprobar su
correcto funcionamiento antes de construir el circuito real.

● Síntesis automática
– A partir de la descripción del circuito en un LDH es posible diseñarlo de

forma automática empleando herramientas informáticas.

– Equivalente a la compilación del software.

– La herramienta de síntesis puede realizar optimizaciones.

– ¡Cuidado! El diseñador debe conocer lo que las herramientas pueden y no
pueden hacer.

Departamento de Tecnología Electrónica – Universidad de Sevilla

VHDL vs VerilogVHDL vs Verilog

● VHDL
– Sintaxis más compleja, similar a

ADA.

– Sintaxis más estricta: reduce la
posibilidad de errores.

– Mejor soporte para diseños
grandes y complejos.

● Verilog
– Sintaxis más simple, similar a C.

– Más fácil de aprender

– Revisiones del lenguaje
● 1995
● 2001*
● 2005
● System Verilog

Tanto VHDL como Verilog están bien soportados por los
fabricantes de hardware y pueden usarse indistintamente e

incluso combinarlos en el mismo proyecto. La elección de uno
u otro depende a menudo del gusto personal. Nos centraremos

en Verilog.

Departamento de Tecnología Electrónica – Universidad de Sevilla

MódulosMódulos

● Un módulo Verilog el equivalente a una clase en un lenguaje de
programación.

● Describe un tipo de circuito.
● Pueden declarase distintas instancias de un mismo módulo.
● Ejemplo: un votador

Expresión lógica:

z = ab+ac+bc

Expresión en Verilog:

z = a&b | a&c | b&c;

module voter(
output z,
input a,
input b,
input c
);

assign z = a&b | a&c | b&c;

endmodule

module voter(
output z,
input a,
input b,
input c
);

assign z = a&b | a&c | b&c;

endmodule

a b c z

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

voter

a

b

c

z

Departamento de Tecnología Electrónica – Universidad de Sevilla

Descripción de un módulo VerilogDescripción de un módulo Verilog

● Directivas del preprocesador
● Declaración de la interfaz

– Nombre del módulo

– Lista de puertos (entradas y salidas)

● Declaración de señales internas
– Nombre y tipo de señales internas

● Descripción del diseño
– Pueden mezclarse tipos de

descripción

● Cualquier número de módulos puede
describirse en un único archivo

● Comentarios
– //, /* … */

`timescale 1ns / 1ps

// Module: cvoter
// Conditional voting circuit
// z = ab + bc + ac if x=1

module cvoter(
input wire x,
input wire a,
input wire b,
input wire c,
output reg z
);

wire v;

assign v = a&b | b&c | a&c;

always @(*)
if (x == 1)

z = v;
else

z = 0;

endmodule // cvoter

`timescale 1ns / 1ps

// Module: cvoter
// Conditional voting circuit
// z = ab + bc + ac if x=1

module cvoter(
input wire x,
input wire a,
input wire b,
input wire c,
output reg z
);

wire v;

assign v = a&b | b&c | a&c;

always @(*)
if (x == 1)

z = v;
else

z = 0;

endmodule // cvoter

Departamento de Tecnología Electrónica – Universidad de Sevilla

Tipos de descripcionesTipos de descripciones

always @(a, b, c)
if (a == 1)

if (b == 1 || c == 1)
z = 1;

else
z = 0;

else
if (b == 1 && c == 1)

z = 1;
else

z = 0;

always @(a, b, c)
if (a == 1)

if (b == 1 || c == 1)
z = 1;

else
z = 0;

else
if (b == 1 && c == 1)

z = 1;
else

z = 0;

assign z = a&b | a&c | b&c;assign z = a&b | a&c | b&c;● Funcional (asignación continua)
– Describe la función combinacional de

señales mediante una expresión
lógica.

● Estructural
– Describe componentes internos y

como se interconectan.

– Para ello se instancian módulos
previamente definidos.

– La definición de una instancia incluye
su nombre, las conexiones de sus
puertos y su tipo (nombre del módulo).

– Las puertas lógicas están predefinidas.

● Procedimental (bloques always)
– Describe un patrón de test (testbench)

o el comportamiento de señales
mediante un algoritmo.

wire out1, out2, out3;

and and1 (out1, a, b);
and and2 (out2, b, c);
and and3 (out3, a, c);
or or1 (z, out1, out2, out3);

wire out1, out2, out3;

and and1 (out1, a, b);
and and2 (out2, b, c);
and and3 (out3, a, c);
or or1 (z, out1, out2, out3);

or1

a
b

c

and1

and3

and2

z

out1

out2

out3

Departamento de Tecnología Electrónica – Universidad de Sevilla

Sintaxis de VerilogSintaxis de Verilog

Verilog HDL Quick Reference Guide
by Stuart Sutherland

http://sutherland-hdl.com/pdfs/verilog_2001_ref_guide.pdf

http://sutherland-hdl.com/pdfs/verilog_2001_ref_guide.pdf

Departamento de Tecnología Electrónica – Universidad de Sevilla

Verilog: puertos y señalesVerilog: puertos y señales

● Tipos de señales básicos
– wire: se les puede asignar un valor en

una descripción funcional, pero no en
una descripción procedimental.

– reg: se les puede asignar un valor en
una descripción procedimental, pero
no en una descripción funcional.

● Para cada puerto de entrada o salida
se crea automáticamente una señal
interna con el mismo nombre. Su tipo
(wire, reg) puede especificarse.

● El tipo de los puertos puede
especificarse cuando estos se
declaran o en el cuerpo del módulo. Si
no se especifica se considera de tipo
“wire”.

module voter(
input wire a,
input wire b,
input wire c,
output reg z
);

always @(a, b, c)
if (a == 1)

if (b == 1 || c == 1)
z = 1;

else
z = 0;

else
if (b == 1 && c == 1)

z = 1;
else

z = 0;

endmodule // voter

module voter(
input wire a,
input wire b,
input wire c,
output reg z
);

always @(a, b, c)
if (a == 1)

if (b == 1 || c == 1)
z = 1;

else
z = 0;

else
if (b == 1 && c == 1)

z = 1;
else

z = 0;

endmodule // voter

Departamento de Tecnología Electrónica – Universidad de Sevilla

Verilog: procedimientosVerilog: procedimientos

● Pueden describir el comportamiento de un circuito mediante estructuras
de control: comparaciones, toma de decisión, bucles, etc.

● También describen bancos de pruebas.
● Similar al software, pero representa algo distinto.
● Tipos de procedimientos principales:

– initial
● Se ejecutan una sola vez al principio de la simulación.
● Útil únicamente en los bancos de pruebas de simulación.

– always
● Pueden ejecutarse más de una vez.
● Lista de sensibilidad: especifica cuando se ejecuta.

Departamento de Tecnología Electrónica – Universidad de Sevilla

Banco de pruebas y simulaciónBanco de pruebas y simulación

● Un banco de pruebas (testbench) es un módulo que contiene:
– Un circuito o circuitos (instancias de otros módulos) que van a ser

simulados: Unit Under Test (UUT)

– Sentencias Verilog que describen como cambian señales de entrada de la o
las UUT para comprobar el correcto funcionamiento de las mismas.

– Directivas del simulador Verilog para controlar opciones de simulación:
resolución temporal, final de la simulación, generación de resultados, etc.

● Características específicas de módulos de bancos de pruebas
– Un módulo de banco de pruebas no está pensado para ser implementado,

sólo para ser simulado.

– Incluye sentencias Verilog que sólo son útiles para simulación. Ej: “initial”.

– Un módulo de banco de pruebas no tiene entradas ni salidas (externas).

Departamento de Tecnología Electrónica – Universidad de Sevilla

Proceso de diseño usando herramientas Proceso de diseño usando herramientas
CAD (Computer-Aided Design)CAD (Computer-Aided Design)

Interpretar y diseñar

Simulación

Descripción verbal
del problema

Descripción
en LDH

¿ok?

Banco de pruebas
en LDH

no
Síntesis automática

Configuración

yes
Diseño del circuito

Departamento de Tecnología Electrónica – Universidad de Sevilla

Implementación de circuitos integradosImplementación de circuitos integrados

●Application-Specific
Integrated Circuit (ASIC):
Todas las fases del proceso
de creación del circuito se
realizan en la fabrica del chip.

●Circuito Configurable:
El interconexionado y/o la
configuración de los
componentes del circuito
se realizan fuera de la
fábrica del chip.

●El diseñador del
circuito establece que
componentes habrá
en el chip, donde se
sitúan y como se
interconectan. ●Standard Cell: El diseñador del

circuito usa bibliotecas de
componentes prediseñados.

●Gate Array: El diseñador del circuito sólo establece que
componentes del chip se utilizan y como se interconectan.

●El circuito sólo puede
configurarse una vez.

●El circuito es
reconfigurable.

●Programmable Array Logic (PAL)
●Programmable ROM (PROM)

●Erasable PROM (EPROM)
●Generic Array Logic (GAL)
●Complex Programmable Logic Device (CPLD)
●Field-Programmable Gate Array (FPGA)

●Full Custom: El diseñador del
circuito se encarga del diseño de
los componentes a nivel
geométrico.

Departamento de Tecnología Electrónica – Universidad de Sevilla

FPGAFPGA

● FPGA
– Field Programmable Gate Array

– Colección de dispositivos lógicos e
interconexiones configurables.

● Configurable Logic Block (CLB)
– Se configura para hacer una función

determinada: AND, OR, XOR, etc.

● Input-Output Block (IOB)
– Se configuran para actuar como entradas o

salidas y conectarse a señales internas

● Interconexiones
– Se configuran para conectar los CLB e IOB a

voluntad

https://es.wikipedia.org/wiki/Field_Programmable_Gate_Array

Departamento de Tecnología Electrónica – Universidad de Sevilla

FPGAFPGA

Departamento de Tecnología Electrónica – Universidad de Sevilla

Síntesis en FPGASíntesis en FPGA

● Síntesis de LDH sobre FPGA
– El código LDH es analizado y las estructuras que describe se convierten

(mapping) en dispositivos lógicos equivalentes.

– Se seleccionan los CLB adecuados (placement) y se configuran para hacer
la función de los dispositivos lógicos necesarios.

– Se configuran las interconexiones para conectar los dispositivos (routing).

● Restricciones
– Sólo se puede sintetizar un subconjunto de las estructuras disponibles en un

LDH.

– Cada fabricante de FPGA tiene sus propias restricciones.

REGLA DE ORO
Si el diseñador no puede imaginar cómo implementar el

circuito descrito, la herramienta tampoco puede.

Departamento de Tecnología Electrónica – Universidad de Sevilla

Síntesis en FPGASíntesis en FPGA

module voter(
input wire a, b, c,
output reg z);
always @(a, b, c)
if (a == 1)

if (b == 1 || c == 1)
z = 1;

else
z = 0;

else
if (b == 1 && c == 1)

z = 1;
else

z = 0;
endmodule

module voter(
input wire a, b, c,
output reg z);
always @(a, b, c)
if (a == 1)

if (b == 1 || c == 1)
z = 1;

else
z = 0;

else
if (b == 1 && c == 1)

z = 1;
else

z = 0;
endmodule

Síntesis automática Archivo
conf.

or1

and1

and3

and2

http://commons.wikimedia.org/wiki/File:Fpga_xilinx_spartan.jpg
http://commons.wikimedia.org/wiki/File:Fpga1a.gif

400K
puertas

equivalentes

Departamento de Tecnología Electrónica – Universidad de Sevilla

Síntesis sobre FPGASíntesis sobre FPGA

or1

and1

and3

and2

and1

and3

and2

Colocación
(placement)

or1

Enrutado
(routing)

Departamento de Tecnología Electrónica – Universidad de Sevilla

Herramientas de diseño básicasHerramientas de diseño básicas

● Editor de texto
– Escritura de código Verilog.

● Compilador de Verilog
– Análisis del código. Detección de errores de sintaxis.

● Simulador
– Simulación de bancos de pruebas.

● Herramienta de síntesis
– Implementación del circuito usando una determinada tecnología.

– Depende del suministrador de la tecnología de implementación.

– Ejemplo: FPGA

● Entorno integrado
– Incluye todo lo anterior.

– A veces suministrado por el propietario de la tecnología de implementación.

– Existen entornos integrados en la WWW.

Departamento de Tecnología Electrónica – Universidad de Sevilla

Icarus Verilog + GtkwaveIcarus Verilog + Gtkwave

● Icarus
– Compilador y simulador Verilog pequeño y simple

● Gtkwave
– Visor de formas de onda: visualización de resultados de simulación.

● Ed. texto + Icarus + Gtkwave: entorno de desarrollo Verilog básico
– Interfaz mediante línea de comandos

– Ligero
● icarus (1,5MB) + Gtkwave (2,5MB) = 4MB

– Fácil de usar

– Software libre

http://iverilog.icarus.com/

http://iverilog.icarus.com/

Departamento de Tecnología Electrónica – Universidad de Sevilla

Icarus Verilog en GNU/LinuxIcarus Verilog en GNU/Linux

● Icarus y Gtkwave disponibles en la mayoría de distribuciones Linux
● Instalación en Debian/Ubuntu:

– Paquetes "iverilog" y "gtkwave"

● Editor de textos
– Vale cualquier editor de texto plano.

– Ej. Gedit
● Estándar en Ubuntu
● Incluye resaltado de sintaxis de Verilog.

$ sudo apt-get install iverilog gtkwave
...

Departamento de Tecnología Electrónica – Universidad de Sevilla

Icarus Verilog en MS-Windows(TM)Icarus Verilog en MS-Windows(TM)

● Busca instalador iverilog + gtkwave en www.bleyer.org
– Importante: instalar el software en una ruta sin espacios

– Recomendado: “c:\iverilog\”

● Abrir un terminal (cmd) y probar instalación:
– Ejecutar “iverilog” en el terminal.

● Si no se encuentra el comando “iverilog” hay que añadir las rutas a los
comandos manualmente. Buscar “agregar rutas a la variable path” para
la versión de Windows adecuada. Añadir estas rutas:

– c:\iverilog\bin

– c:\iverilog\gtkwave\bin

● Editor de textos
– Usar un buen editor de textos (no el Bloc de Notas -Notepad-)

– Ej. Notepad++ (notepad-plus-plus.org), Atom, VCS, etc.

Departamento de Tecnología Electrónica – Universidad de Sevilla

Icarus Verilog + GtkwaveIcarus Verilog + Gtkwave
sesión típica (Linux)sesión típica (Linux)

$ cd 02-1_votador1

$ ls
votador_tb.v votador.v

$ iverilog votador.v votador_tb.v

$ vvp a.out
VCD info: dumpfile votador_tb.vcd opened for output.

$ ls
a.out votador_tb.v votador_tb.vcd votador.v

$ gtkwave votador_tb.vcd &

Departamento de Tecnología Electrónica – Universidad de Sevilla

Entornos integrados de XilinxEntornos integrados de Xilinx

● Xilinx
– Uno de los principales fabricantes de FPGA.

● Dos entornos disponibles y parecidos
– ISE: tradicional, modelos de FPGA “antiguos”.

– Vivado: nuevo entorno. Sólo para modelos de FPGA recientes.

● Implementación sólo sobre FPGA's de Xilinx.
● Entorno integrado incluyendo gestor de proyectos, editor de código,

simulación, síntesis y mucho más.
● Completo pero complejo (no mucho) para principiantes.
● Pesado de descargar (~5GiB) e instalar (~10GiB).
● Es necesario registrarse.
● Licencias gratuitas para uso académico con limitaciones.
● Versiones para MS-Windows(TM) y GNU/Linux.

Departamento de Tecnología Electrónica – Universidad de Sevilla

Entorno en WWW: EDAPlaygroundEntorno en WWW: EDAPlayground

● Permite hacer y simular diseños
en Verilog (y otros lenguajes).

● Varios simuladores disponibles,
incluyendo Icarus Verilog.

● Incluye editor de texto y visor de
formas de onda.

● Requiere registro para simular y
guardar diseños.

https://www.edaplayground.com/

https://www.edaplayground.com/

Departamento de Tecnología Electrónica – Universidad de Sevilla

Resumen. LDHResumen. LDH

● Descripción del comportamiento de circuitos digitales.
● Posibilidad de descripción desde varios puntos de vista: estructural,

funcional, procedimental.
● Permite la simulación del sistema antes de su implementación

(fabricación)
● Permite automatizar total o parcialmente el proceso de implementación

usando herramientas informáticas.

