Instituto de

Microelectrénica
de Sevilla

Tema l

Introduccién a Verilog

Objetivos

Presentar las caracteristicas basicas del lenguaje de
descripcion de hardware Verilog

Introducir las palabras claves del lenguaje y sus reglas
Introducir el diseno jerarquico

Presentar los tipos de datos, operadores y estructuras del
lenguaje

Mostrar la descripcion de modulos basicos
combinacionales y secuenciales

Mostrar la descripcion de estimulos para simulacion
(testbench)

Esquema de la unidad

e Aspectos basicos
* Tipos de datos

* Vectores y arrays
e Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles
 Operadores

e Parametros
e Maquinas de estado
e Directivas define e include

e Simulacion funcional

Aspectos basicos de Verilog

Instituto de
Microelectrénica
de Sevilla

* Descripcion de moédulos de
diseno
— Comienza con la palabra clave
module

— Se declaran la lista de entradas y
salidas del modulo

— Se pueden agrupar entradas (o
salidas) si son del mismo tamano

— En el cuerpo del mddulo se
describe el comportamiento del
mismo

— Se termina con la palabra clave
endmodule

Estructura de Computadores — Pilar Parra

halfadd

— Sum
- carry

module halfadd (
input wire a,b,

output wire sum, carry);

assignsum=a

assign carry= a&b;

endmodule

Ab’

Aspectos basicos de Verilog

Instituto de
Microelectrénica
de Sevilla

e Descripcion de modulos de
diseno
— assign se utiliza para definir
una expresion logica
— N es la op. exclusive-OR
— & eslaop. and

— Las palabras clave son siempre
en minusculas

— Verilog es “case-sensitive”:
diferencia mayusculasy
minusculas

Estructura de Computadores — Pilar Parra

halfadd

— Sum
- carry

module halfadd (
input wire a,b,

output wire sum,carry);

assignsum=a

assign carry= a&b;

endmodule

Ab’

* Reglas para los comentarios y el formato:

— Se pueden escribir comentarios de linea y de bloque

* Los comentarios de linea comienzan a partir de dos barras
consecutivas (//) y terminan al final de la linea.

* Puede ser una linea completa o solo la parte final
* Los comentarios de blogque comienzan con (/*) y terminan
con (*/)
— Verilog es un lenguaje sin formato
* Se puede organizar el cddigo como se quiera

* Se recomienda usar espacios, tabulaciones y fin de linea, de
modo que el codigo sea legible

* En general, no se deberia poner mas de una sentencia
ejecutable por linea.

Instituto de

Aspectos basicos de Verilog s

* Disefo jerarquico:

— Podemos construir nuevos modulos a partir de otros

d e SUM
b — fulladd
: . carry
cin
Ul U2
halfadd wil halfadd
a a sum a sum sum
b b carry b carry
w3
cin
w2 — . carry

Estructura de Computadores — Pilar Parra 7

Instituto de
Microelectrénica
de Sevilla

* Diseno jerarquico:

— Es

Aspectos basicos de Verilog

wl

u2

necesario: vl
_ halfadd
Declarar las variables locales a a sum
b b carry

Instanciar los modulos

— Dar a cadainstancia un nombre cin

halfadd
a sum

b carry

— Conectar los puertos de entrada
y salida de cada instancia

w2

w3

sum

carry

module fulladd (input wire a, b, cin,
output wire sum, carry);

wire wl,w2,w3;

halfadd U1(.a(a), .b(b), .sum(w1), .carry(w2));

halfadd U2(.a(w1), .b(cin), .sum(sum), .carry(w3));

assign carry =w2 | w3;

endmodule

Aspectos basicos de Verilog

e Conexion posicional vs conexion nombrada

— Se pueden conectar puertos y variables respetando el orden de
la declaracion de los puertos en el médulo (conexidn posicional)

— No es recomendable, es facil cometer errores
— Es preferible usar la conexion nombrada (la vista anteriormente)

module fulladd (input wire a, b, cin,

output wire sum, carry);

module halfadd (P y)
input wire a,b,

output wire sum,carry);

wire wl,w2,w3;

assign sum a’b; halfadd Ul(a,b,wl,w2); <
assign carry= a&b; halfadd U2(w1,cin,sum,w3);
endmodule assign carry =w2 | w3;
endmodule

Estructura de Computadores — Pilar Parra

Aspectos basicos de Verilog

* Tipos de descripcion:
— Descripciéon funcional

— Descripcion estructural
— Descripcion procedimental

Estructura de Computadores — Pilar Parra 10

Instituto de
Microelectrénica

de Sevilla

* Tipos de descripcion:

— Descripcion funcional:

* Se realizan asignaciones de forma continua utilizando assign

* Representa conexiones directas de hardware que estan
constantemente activas y responden inmediatamente a
cambios en sus entradas

* Modela légica combinacional

 Todas las sentencias assign se ejecutan concurrentemente

module halfadd (
input wire a,b,
output wire sum,carry
);
assign sum = a’\b;
assign carry= a&b;
endmodule

Aspectos basicos de Verilog

* Tipos de descripcion:

— Descripcion estructural:

* Se conectan médulos que ya estan definidos previamente
mediante instanciacion

» Las puertas logicas basicas ya estan predefinidas (and, nand,
or,nor, xor, xnor, not, buf, etc.)

* Es muy util para la interconexion de modulos creados previamente
(disefio jerarquico)

module fulladd (input wire a, b, cin,
u1 U2 output wire sum, carry);

halfadd wl halfadd H .
3 g e T sum wire wl,w2,w3;
b b carry b carry

w3 halfadd U1l(a,b,wl,w2);
cin halfadd U2(w1,cin,sum,w3);
w2 —— carry
assign carry = w2 | w3;

endmodule

* Tipos de descripcion:

— Descripcion procedimental:

e Permite el uso de estructuras de control similares a las
de los lenguajes de programacion

e Se estructura en bloques procedimentales o procesos

* Todos los bloques procedimentales se ejecutan
concurrentemente

* Dentro de cada proceso las instrucciones se ejecutan
en el orden en que estan escritas (flujo secuencial)

Instituto de

Aspectos basicos de Verilog s

* Bloques procedimentales

— Pueden definir comportamientos complejos, como logica
combinacional repetitiva o condicional

— Pueden definir circuitos con memoria (secuenciales)

— Pueden definir bancos de estimulos (testbenches) para
simulaciones
— Fundamentalmente hay dos tipos de bloques procedimentales:
 tipo always: Se ejecutan continuamente (ciclicamente)
 tipo initial: Se ejecutan linealmente (de principio a fin una sola vez)

initial
always @(a, b, sel) begin

if(sel==1) a=1;

op =b; b =0;
else sel =1;
op = a; #10ns;
sel=0;

end

* Blogues procedimentales

— Cuando hay mas de una sentencia en un bloque,
estas han de agruparse mediante begin y end

always @(a, b, sel)
if(sel==1)
op =b;
else
op = a;

-

Estructura de Computadores — Pilar Parra

op

initial

/

15

Aspectos basicos de Verilog

* Ejemplo de concurrencia

— Un mddulo puede contener multiples blogues procedimentales (initial,
always) y multiples sentencias assign y no hay orden de ejecucion
entre ellos sino que se ejecutan en paralelo (concurrencia)

— Dentro de un procedimiento las sentencias se ejecutan
secuencialmente en orden de aparicion

always begin // a periodica T=10
definen la misma H5a =~a;
funcion
/ | module ejemplo2 (end
: input wire x, :
module ejemplo { Input wire y, alway;fgﬁT ~b; // b periodica T=20
input wire x, input wire z, Ly rmereRes
Input wirey, output wire f1);
input wire z,
output wire f1); wire fO: initial begin
! a=0;
_ assign fo=x & vy; b=0:
assign fl=x&y&z; assign f1 = f0 & z; #;OE)'
endmodule endmodule eniﬁniSh;

Estructura de Computadores — Pilar Parra 16

Instituto de

Aspectos basicos de Verilog s

* Bloques procedimentales

— Cada blogue always se ejecuta (dispara) cuando hay un evento en
alguna variable de su lista de sensibilidad que viene determinada
por una @

— Enldgica combinacional la lista de sensibilidad debe incluir todas
las variables

— Para la légica secuencial el evento suele ser el flanco de una senal,
es decir, se disparan en una transicion especifica de una
determinada senal.

— Se utilizan las palabras clave posedge y negedge

always @(a, b, sel) always @(posedge clock)
if(sel==1) b\ g<=d;
op = b; L
else
op = a;
Lista de
sensibilidad

Estructura de Computadores — Pilar Parra 17

Instituto de

Esquema de la unidad s

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* QOperadores
 Parametros

 Maquinas de estado

* Directivas define e include
e Simulacion funcional

Tipos de datos en Verilog

— Nets, para representar conexiones. No almacenan valores.

* Se usan sobre todo para conexiones entre modulos: wire (el mas
comun y el tipo por defecto).

* Se usan en asignaciones continuas (assign), nunca en bloque
procedimentales.

— Variables, para almacenar valores.

* El mas importante: reg. Otros: integer (entero con signo de 32
bits), real, time...

* Se usan en bloques procedimentales (always, initial)

— Tipos compuestos:

* vectores: cualquier wire o reg puede ser vectorial,
— reg [15:0] data;
— wire [3:0] opcode;

* arrays: para memorias o bancos de registros,
— reg [7:0] memoria[0:255];

Constantes en Verilog

— parameter: constante valida en un modulo que
permite crear bloques genéricos personalizables,
su valor puede modificarse al instanciar el modulo

— localparam: constante cuyo valor es fijo y no se
puede modificar

Estructura de Computadores — Pilar Parra 20

Instituto de

Tipos de datos en Verilog F

* Tipos por defecto y declaraciones implicitas

— Una declaracion sin tipo es wire por defecto

— Una errata en un nombre de variable puede llevar a una declaracion implicita
como wire

— Lo recomendable es declarar completamente todas las variables

— También se puede usar la directiva ‘default_nettype none de esta forma se
genera un error si se intenta usar una variable no declarada

module halfadd (module fulladd (input wire a, b, cin,
input wire a, b, output wire sum, carry);

output sum, carry);
wire wl,w2,w3;

. AR
as>slgn sum _a 2;0 halfadd U1(.a(a), .b(b), .sum(wl), .carry(ww2));
assign carry = as&; halfadd U2(.a(w1), .b(cin), .sum(sum), .carry(w3));

endmodaule assign carry = w2 | w3;

endmodule

Estructura de Computadores — Pilar Parra 21

Instituto de

Esquema de la unidad s

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* QOperadores
 Parametros

 Maquinas de estado

* Directivas define e include
e Simulacion funcional

Vectores y arrays

e Al declarar un vector se define su tamafno (rango maximo)

— Puede ser descendente o ascendente

— Puede contener expresiones (constantes y conocidas antes de la
simulacion)

— Por defecto las componentes del vector no tienen signo, si se

guieren cantidades con signo, seran en notacion complemento a
2 y se ha de declarar como reg signed

module mux4 (
input wire [3:0] a,b,
input wire sel,
output reg [3:0] op

reg signed [7:0] svecs;
reg [7:0] usvecs;

); initial begin
always @(a, b, sel) svec8 =8'b11001101; //-51
if(sel== 1) sel usvec8 = 8'b11001101; // 205
op =b;
else
op = a; parameter N=8;
endmodule reg [N-1:0] in;

Instituto de

Vectores y arrays Bt

* Verilog permite arrays (matrices)

— De cualquier tipo

— Con cualquier nimero de dimensiones (a nivel RT se usan dos
dimensiones)

* Los arrays multidimensionales se usan para

— Modelar memorias

. data_in
— Declarar grupos de registros .
;o ts
_ registro[0]
/* Declaracién de un array de 16 registros de ’I’ 8
8 bits */ data_out
reg [7:0] registro [0:15];
// registro == array de bits data_in
// registro [5] == uno de los registros de 8 7 ’|’ 8 o
// bits (el 62) _ registro[15]
// registro[5][2] == bit 2 del registro[5] wen Tt '|’ 8
data_out

Estructura de Computadores — Pilar Parra 24

Vectores y arrays

 Ejemplo: we
module memoria_simple (
input wire clk, 8 .
input wire we, <7~ data_in
input wire [7:0] addr, addr _\8_ 3
input wire [7:0] data_in, 4> data_out
output wire [7:0] data_out C/I\k

);

reg [7:0] mem [255:0]; «—— | Estamemoria contiene 256
palabras de 8 bits

always @(posedge clk) begin

if (we) begin Asignamos data_in (8 bits)
mem[addr] <= data_in; «— |4 byte dado por mem[addr],
end
end por ejemplo, si addr que es un
assign data_out = mem[addr]; vector de 8 bits contiene el
endmodule valor 00110110 -> 54
hariamos mem[54] <- data_in
(ambos son vectores de 8 bits)

Esquema de la unidad

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
e Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* QOperadores
 Parametros

 Maquinas de estado

* Directivas define e include
e Simulacion funcional

Literales y bases

* Un literal numérico es una representacion explicita y fija
de un valor

— Permiten especificar el ancho, la base y el valor
* 8'd255: Literal de 8 bits en base decimal con valor 255 (1111 1111)

16'hASA5: Literal de 16 bits en base hexadecimal con valor A5A5
(1010 0101 1010 0101)

4'b1010: Literal de 4 bits en base binaria con valor 1010
8'b1010 0101: Se admiten “_” para mejorar la legibilidad
8’0123: Literal de 8 bits en base octal con valor 123 (01010011)
Si se omite, la base por defecto es 10

* Cuando asignamos un literal a un vector no es necesario
gue tengan el mismo tamano

— El valor se extiende con 0 o se trunca al tamano del vector

Esquema de la unidad

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* QOperadores
 Parametros

 Maquinas de estado

* Directivas define e include
e Simulacion funcional

Instituto de

Procedimientos: sentencias condicionales '.“c”nsn'%r;z:s:ﬁ;m

 Sentencia condicional if-else

— Su sintaxis es:
1f (expresion)
comandol;
else
comando?Z;

— También:
1f (expresionl)
comandol;
else 1f (expresion?2)
comando?Z;
else 1f (expresion3)

comando3;
else comandoi4;

Estructura de Computadores — Pilar Parra 29

Procedimientos: sentencias condicionales 't

e Sentencia condicional if-else, ejemplo (l):

module flip_flop_d_reset(|

input wire clk, rst, d, rst |
output reg g —1 d d
); clk

JAN

always@(posedge clk) begin

if (rst==1'b1)
q <= 1'b0; rst d|q
else 1 X1|0
q<=d; 0O 0fO
end O 1|1
endmodule

Estructura de Computadores — Pilar Parra 30

@S1D4
-&?‘ Oo

=
2

e Sentencia condicional if-else, ejemplo (ll):

module contador_con_reset (
input wire clk, rst, up,
output reg [3:0] cuenta);

always@(posedge clk) begin
if (rst==1'b1)
cuenta <= 4'b0000;
else if (up ==1'b1)
cuenta <=cuenta + 1;
end
endmodule

Estructura de Computadores — Pilar Parra

— rst
clk
A cuenta
| 14
rst up cuenta
1 X 0
0O 1 cuenta +1
0O O cuenta

: Procedimientos: sentencias condicionales '.“c“nsn'%'ﬁfc‘iééfﬁ’;?%m

Para rst asincrono, se debe incluir el
mismo en la lista de sensibilidad:

always @(posedge clk, posedge rst)

31

Instituto de

Procedimientos: sentencias condicionales '.“c“nsn'%r;z:s:ﬁ;m

e Sentencia condicional if-else, ejemplo (Il1):

module comparador(
input wire [3:0] a, b,
output regg, e, |);

always @* begin comparador

g=0; 4 |
o=0. a _.| a>b g

|=0; a=b e
- 4

|H:2 b —<— a<b — |
else if (a<b)

|=1;
else gel
e=1;

end
endmodule

a>b 100
a=>b 010
a<b 001

Estructura de Computadores — Pilar Parra 32

Procedimientos: sentencias condicionales 't

e Sentencia case

— Su sintaxis es:

case (expresion)
valorl: sentencial;
valor?2: sentencial;
valor3: sentencial3;
default: sentenciaid;

endcase

— default es opcional, aunque recomendable

Estructura de Computadores — Pilar Parra 33

Procedimientos: sentencias condicionales '.“c“nsn'%'ﬁfc‘iééfﬁ’;?%m

e Sentencia case, ejemplo (l):

module multiplexor_4a1l (.
input wire [1:0] sel, data_.m[O] — 0
. . . data_in[1] 1
input wire [3:0] data_in, _ data_out
output reg data_out); data_in(2] — g
- ’ data_in[3] —
12
always @* begin sel
case (sel)
2'b00: data_out = data_in[0];
2'b01: data_out = data_in[1];
2'b10: data_out = data_in[2];
2'b11: data_out = data_in[3];
default: data_out = 1'bx; // Valor 'x' para el caso por defecto
endcase // p.ej: si sel valiese 2'b0x, 2'bx1, 2'bxz, etc.
end
endmodule

Estructura de Computadores — Pilar Parra 34

Procedimientos: sentencias condicionales '.“c“nsn'%'ﬁfc‘iééfﬁ’;?%m

* Sentencia case, ejemplo (ll):) i
module alu_simple (»|' 4 14

input wire [1:0] op, \V4
input wire [3:0] a, op
2
T4

input wire [3:0] b,
output reg [3:0] result);

always @* begin result
case (op)
2'b00: result=a + b; // Suma op[1:0] result
2'b01: result =a - b; // Resta 00 a+b
2'b10: result=a & b; // AND 01 a-b
2'b11: result=a | b; // OR 10 AND(a,b)
default: result = 4'bx; // Valor 'x’ del caso por defecto 11 OR(a,b)
endcase
end
endmodule

Estructura de Computadores — Pilar Parra 35

Procedimientos: bucles

e Bucle for

— Su sintaxis es:
for (initializacion; expresion; step)

sentencia;

— El bucle for comienza con la inicializacion y evalua
la expresion, si esta se cumple realiza la sentencia
y ejecuta la funcion step.

— Permite escribir codigo mas compacto y legible si
se trabaja con estructuras repetitivas

Estructura de Computadores — Pilar Parra 36

Procedimientos: bucles

* Bucle for, ejemplo (I):

Instituto de
Microelectrénica
de Sevilla

E paridad

module parldad_lmpar_4b|ts(a[0] —
input wire [3:0] a, a[] —
output reg paridad); a[2]
a[3]
integer i;

always @* begin
paridad = 1'b0;
for (i =0;i<=3;i=i+1)
paridad = paridad * ali];

end
endmodule
0
Estos valores va a[0]

tomando la salida | 311] xor a[0],
en cada iteracion a[2] xor a[1] xor a[0]
a[3] xor a[2] xor a[1] xor a[0]

a[3:0] paridad
0000 0
0001 1
0010 1
0011 0
1101 1
1110 1
1111 0

Instituto de

Procedimientos: bucles i

e Bucle for, ejemplo (ll):

module banco_registros (
input wire clk, rst, wen,
input wire [3:0] addr [0:15],
input wire [7:0] data_in [0:15],
output wire [7:0] data_out [0:15]);

reg [7:0] registro [0:15]; // Declaracién de un array de 16 registros de 8 bits

integer i;
// Légica de escritura data_in[0}
always @(posedge clk) begin 7 ‘i’ 8 0
if(rst) registro[0]
for (i=0; i< 15;i=i+1) ,I, 3
registro[i] <= 8'b00000000;
. data_out[0]
else if (wen)
registro <= data_in;
end :
data_in[15]
// Légica de lectura 7 + 8 0
assign data_out = registro; ;
endmodule registro[15]

1 s
_ data_out [15]
Estructura de Computadores — Pilar Parra 38

wen rst

Procedimientos: bucles Bl

de Sevilla

* Bucle repeat

— Su sintaxis es:
repeat (expresion)

sentencia;

— El bucle repeat evalua la expresion para obtener un numeroy
ejecuta la sentencia el numero de veces especificado.

— Muy usado en simulacion (testbenches)

Ejemplo:

// Generacion de relo;j:
//20 ciclos de periodo 10
repeat (20) begin

#5 clk = ~clk;
end

Estructura de Computadores — Pilar Parra 39

Instituto de

Procedimientos: bucles =8

* Bucle forever:

— Su sintaxis es:
forever sentencila;
— Se ejecuta siempre
— sirve para definir senales en test benches para simulacion
— Ejemplo:
// Generacion de reloj: periodo 10 unidades
initial begin
clk = 0;
forever #5 clk = ~clk;
end

Estructura de Computadores — Pilar Parra 40

Instituto de

Procedimientos: bucles =8

e Bucle while:

— Su sintaxis es:
while (condicidn)
sentencia;

— ejecuta una sentencia hasta que una determinada expresion es falsa

— Ejemplo:
//Espera los ciclos de reloj necesarios hasta que completed ==
while (completed !=1)
@(negedge clk);

Estructura de Computadores — Pilar Parra 41

Esquema de la unidad

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

 QOperadores
 Parametros

 Maquinas de estado

* Directivas define e include
e Simulacion funcional

Operadores

e Existen muchos operadores, algunos ya han
ido apareciendo, se pueden clasificar en tipos

— Aritméticos
— Relacionales
— Logicos
* De bits, de palabras (bit a bit), de reduccidon
— De desplazamiento
— De concatenacion y replicacion
— Condicional ternario
— De asignacion bloqueante y no bloqueante

Instituto de

Operadores i

* Operadores aritméticos

* Suma: +

* a+b

 Suma de dos valores.
Resta: -

e a-b

* Resta de dos valores.
Multiplicacion: *

e a*b

e Multiplicacién de dos valores.
Division: /

 a/b

* Division de dos valores (si ambos son enteros, es division entera).
Madulo (Residuo): %

* a%b

* Devuelve el residuo de la division.

Operadores

* Operadores Relacionales y de Comparacion

* |lgualdad logica: ==

¢ 3==

* Devuelve 1 (true) sia esigual a b.
* Desigualdad légica: !=

e al=b

* Devuelve 1 (true) si a es diferente de b.
* Mayor que: >

e a>b
* Menor que: <

e a<b
* Mayor o igual que: >=

e a>=b
 Menor o igual que: <=

e a<=b

Operadores

* Operadores logicos (booleanos)

* AND légico: &&

* a&&Db

* True siambos ay b son true (1).
* OR légico: | |

*allb

* True sial menos uno de a o b es true (1).
* NOT légico: !

e la

* True siaes false (0).

O pera dores il

de Sevilla

* Operadores bit a bit

- Ejemplos

« AND bit a bit: & reg [3:0] vectorl, vector2, vector3;

* a&b reg [3:0] num;

e QOperacion AND entre cada bitdeay b. o _

. . initial begin
* OR bit a bit: |
vectorl =4'b1001;

* alb

* Operacién OR entre cada bitde ay b. vector2 = 4'b1010;
e XOR bit a bit: A vector3 = 4'b11x0;

* a”b num =~ vectorl; // num = 0110

. op.erauo.n XOR entre cada bitde ay b. hum = vectorl & #b0111; // num = 0001
 NOT bit a bit: ~

. ~g num = vectorl & vector2; // num = 1000

« Niega cada bit de a num = vectorl | vector2; // num =1011
 Combinaciones de los mismos: num = vector2 & vector3; // num = 10x0

* NAND ~&, NOR~|, XNOR ~" 0 N~ num = vector2 | vector3; // num=1110

end

Operadores

 Operadores de reduccion

— Aplican una operacion bit a bit y generan un unico bit de
resultado:

* AND de reduccion: &a
* OR de reduccion: |a
e XOR de reduccion: "a
NAND de reduccion: ~&a
NOR de reduccion: ~|a
* XNOR de reduccion: “*a o *~a
— Ejemplos:
e Sia=4'p1010,&a=1&0&1&0=0
* Conreg[3:0] g; &q=q[3]&q[2]& q[1]& q[0]
— En el ejemplo de la transparencia 37, bastaria hacer:
e assign paridad = a;

Instituto de

Opera dores e

* Operadores de desplazamiento

* Desplazamiento logico izquierda : <<
e a=a<<n;(despl. aizq., rellena con 0 por la dcha.)
* Desplazamiento légico derecha : >>
e a=a>>n; (despl. adcha,, rellena con 0 porlaizq.)
* Desplazamiento aritmético derecha con asignacion: >>>
* a=a>>>n; (despl. adcha., rellena con el bit de signo por la izq.)

- Ejemplos:

reg [7:0] vectorl , vector2;
reg signed [7:0] vectorsigno;
initial begin
vectorl = 8'b10011001;
vectorsigno = 8'b10011001;
vector2 =vectorl <<3; // 11001000 (entran O por la dcha.)
vector2 = vectorl >>1; // 01001100 (entra un O por la izq.)
vector?2 = vectorsigno >>>1; // 11001100 (preserva signo)
end

Estructura de Computadores — Pilar Parra 49

Operadores

* Operadores de Concatenacion y Replicacion
 Concatenacion: {}

{a, b} =8b10011100

* {a, b}

* Combina los bits de a y b en un unico vector. /
* Por ejemplo, si a es de 4 bits y b es de 4 bits, {a, b} sera de 8 bits.
 c={c[4:0], c[7:5]} rota el vector c[7:0] tres posiciones a la izquierda.

* Replicacion: {n{}}
* {Hal}

* Repite el valor de a n veces.
* Por ejemplo, sia =2'b01, entonces {4{a}} = 8'b01010101

* Operador condicional ternario:

— Evaluda una condicion y asigna un valor diferente segun si
dicha condicion se cumple o no.

e result = <condition> ?<true value> :<false value>;

Operadores

* Operadores de Asignacion en Procedimientos

* Asignacion bloqueante: =
* Se ejecuta de forma secuencial dentro de un bloque initial o always.

e Asignacion no bloqueante: <=

* Permite que las asignaciones se programen en paralelo dentro de
un bloque secuencial.

e Muy utilizado en el modelado de registros y secuencias de diseno
sin introducir dependencias de orden.

module.bloquegnte(module nobloqueante(
input wire a, clk, input wire a, clk,
;)utput reg zb output reg znb
‘);
ree a; . regq;
always @ (posedge clk) begin always @ (posedge clk) begin
q=a; g <=a;
zb=q; Cuandollega znb <= g Cuando llega el flanco
end el flanco activo end ’ activo de reloj, znb
endmodule de reloj, zb endmodule toma el valor de qY,
toma el valor en el siguiente flanco,
dea es cuando toma el
valor de a

Operadores

clk

znb | -~ e |

zb [] | L

Cuando llega Cuta.md(()]I Ilegla gl flabnco
. activo de reloj, zn
module bloqueante(el ﬂanc.o activo module nobloqueante(toma el valor de g,
. . Ik de reloj, zb . . o ’
input wire a, clk, toma el valor input wire 3, clk, en el siguiente flanco,
output reg zb de a output wire znb es cuando toma el
);); valor de a
reg q; reg q;
always @(posedge clk) begin always @ (posedge clk) begin
q=a; q<=a;
zb = q; znb <= q;
end end
endmodule endmodule

Estructura de Computadores — Pilar Parra 57

Operadores

* Resumen
* Aritméticos: +, -, *, /, %,
Comparacion: ==, |=, >, <, >=, <=
e Logicos: &&, ||, !

Bit a bit: &, |, #, A, ~A, ~ (incluyendo reduccion).
* Desplazamiento: <<, >>, >>>

* Concatenacion y replicacion: {}, {n{}}

* Condicional ternario: ? :

e Asignacion: bloqueante (=) y no bloqueante (<=)

Estructura de Computadores — Pilar Parra 53

Esquema de la unidad

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* QOperadores
 Parametros

 Maquinas de estado

* Directivas define e include
e Simulacion funcional

Constantes en Verilog

— parameter: constante valida en un modulo que
permite crear bloques genéricos personalizables, su
valor puede modificarse al instanciar el médulo

— localparam: constante cuyo valor es fijo y no se puede
modificar

* Permiten definir el ancho de un bus, el tamano de un
contador, los elementos de un vector, ...

* Se les asigna determinados valores que pueden ser
modificados al instanciar el médulo, sin modificar su codigo.

 Su uso facilita la reutilizacion y adaptacion del modulo a
distintos contextos

* Se recomienda nombrarlos con mayusculas para facilitar la
legibilidad

Instituto d

Modulos parametrizables s

* Ejemplo (l):

module mux #(parameter WIDTH = 8) (
input wire [WIDTH-1:0] a,b, Definimos variables
input wire sel, de 8 y 4 bits para
output reg [WIDTH-1:0] op comparar las
); / instanciaciones
Always @ wire [7:0] a8, b8; /
if (sel) reg [7:0] op8;
op=a; wire [3:0] a4, b4;
else reg [3:0] op4;
op=b: wire sel;
endmodule

//instanciacion por defecto: WIDTH se mantiene a 8
mux mux8 (.a(a8),.b(b8),.sel,.op(op8));

// Instanciacién con un ancho diferente
mux #(.WIDTH(4)) mux4 (.a(a4),.b(b4),.sel,.op(op4));

 Modulos parametrizables, ejemplo (ll):

module contador #(parameter WIDTH = 8) (
input wire clk,
input wire rst,
output reg [WIDTH-1:0] count
);
// Légica del contador
always @(posedge clk)

if (rst)
count <="'d0O;
else ., . 1
// Instanciacion con un tamafio diferente
count <=count + 1;
endmodule contador #(.WIDTH(16)) contadori6bits (
.clk(clk),
.rst(rst),
.count(count16)

Estructura de Computadores — Pilar Parra

57

Instituto de
Microelectrénica

de Sevilla

 Sintaxis:

— Declaracion:

module nombre_modulo #(parameter parametro1 = valor1,
parametro2 = valor2, ...) (...);

— Redefinicion al instanciar el modulo:

nombre _modulo #(.parametro1(valor1),
.parametro2(valor2), ...)
nombre _instancia (...);

— Se puede usar conexion posicional.

nombre_modulo #(valor1,valor2, ...)
nombre_instancia (...);

Estructura de Computadores — Pilar Parra 58

Constantes en Verilog

* |ocalparam define una constante invariable

Est

— A diferencia de parameter su valor no puede ser

redefinido al instanciarse

— Sin embargo, puede estar definido a partir de los
valores de otras constantes tipo parameter

module multiplicador
#(parameter WIDTH_A =4, WIDTH_B = 4)

(input wire [WIDTH_A-1:0] a,
input wire [WIDTH_B-1:0] b,
output reg [WIDTH_OP-1:0] result);

localparam WIDTH_OP = WIDTH_A + WIDTH_B;
assign result=a * b;

endmodule

a b
fm _4n

multiplicador

ructura de Computadores — Pilar Parra

T men

result

59

Instituto de

Ejemplo: registro universal i

* Elregistro universal puede realizar todas las operaciones:

— desplazamiento a derecha e izquierda,

— carga en paralelo (operacion de escritura)
— inhibicion (guardar el dato)

— puestaa O

serial_in_left data_in[7:0] serial_in_right

op[1:0] | operacion

00 inhibicidon

op[1:0] =1 reg_univ(8] 01 | shift left
rst — A 10 shift right

| | 11 escritura

clk data_out[7:0]

Instituto de
Microelectrénica

de Sevilla

module reg_univ #(parameter WIDTH = 8)(

input wire clk, rst,
input wire [1:0] op, o .
input wire serial_in_left, serial_in_left data_in[7:0] serial_in_right
input wire serial_in_right, |
input wire [WIDTH-1:0] data_in,
. op[1:0] — ivI8
output reg [WIDTH-1:0] data_out reg_univ[8]
); rst — A

always @ (posedge clk, posedge rst) begin | |
if (rst) clk data_out[7:0]
data_out <= ‘0;
else

case (op)
2'b00: data_out <= data_out;

2'b01: data_out <= {data_out[WIDTH-2:0], serial_in_right};
2'b10: data_out <= {serial_in_left, data_out [WIDTH-1:1]};
2'b11: data_out <=data_in;

default: data_out <= ‘0; begin
endcase data_out <= data_out<<1;
end data_out[0] <= serial_in right
endmodule end

Esquema de la unidad

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* QOperadores
 Parametros

 Maquinas de estado

* Directivas define e include
* Simulacion funcional

Descripcion de maquinas de estado 'Msn'%

e Se utilizara una estructura general del cédigo en la que hay 2 tipos
de procesos

— Un proceso always para establecer las condiciones de cambio de
estado

— Uno o varios procesos always para calcular el proximo estado y las
salidas. También pueden usarse sentencias assign.

* Seincorpora reset asincrono (puede ser sincrono) para llevar a la
maquina a un estado inicial conocido.

El estado inicial que
conviene definir en
este caso es el
estado A

Descripcion de maquinas de estado 'Msn'%

module detector_3 _unos (
input wire clk, se declaran
input wire rst, entradas y
input wire in, salidas
output wire z);
se asignan cddigos a los estados
parameter A=2'b00, B=2"b01, C=2"b10; y se declaran las variables de
reg [1:0] state, next_state; estado
always @(posedge clk or posedge rst) begin =~
if (rst) \
state <= A;
else procedimiento de cambio de estado:
state <= next_state; L. o
q -valor 1 en rst lleva a la maquina al estado inicial
en

- un flanco positivo en clk lleva a cambio de
estado

Estructura de Computadores — Pilar Parra 64

Descripcion de maquinas de estado 'Msn'%

procedimiento case (state)
combinacional de calculo A: if (in)
del proximo estado ext state = B:
else
. odria realizarse con =A:
always begin P next_state = A;
if/else en lugar de la B: if (in)
case (state) sentencia condicional next state = C:
A: next_state=in ? B : A; _ =0
B: next_state=in?C:A; else
C: next_state =in ? C: A; | hext_state =A;
default: next_state = A; lculo de 1a salid C:if (in)
calculo de la salida = C:
endcase) . next_state = C;
/ podria realizarse con else
end / otro alwa I
ys enfugar t_state = A;
assign z = (state ==C &&in); del assign next_ =A;
endmodule — default: next_state = C;
always endcase
if (in==1 && state == C)
z=1;
else
z=0;

Descripcion de maquinas de estado 'Msn'%

La misma especificacion puede realizarse

module detector_3 _unos (

input wire clk,

inout wire rst El bloque de

input wi -

_ P 7 declaracion del
inputwire in, maodulo no cambia

output wire z);

parameter A=2'b00, B=2"b01, C=2'b10;
reg [1:0] state, next_state;

always @(posedge clk or posedge rst) begin
if (rst)
state <= A;
else
state <= next_state;
end

mediante una maquina de Moore

En este caso la salida estd asociada al
estado presente ya que no depende del
valor de |la entrada de forma directa

El procedimiento de cambio de estado, tampoco
cambia:

-valor 1 en rst lleva a la maquina al estado inicial

- un flanco positivo en clk lleva a cambio de
estado

always begin
case (state)
A: next_state=in?B:A;
B: next_state=in?C:A;
C:next_state=in?D : A;
D: next_state=in?D:A;
default: next_state = A;
endcase
end
assign z = (state ==D);
endmodule \

\

always
if (state == D)
z=1;
else
z=0;

El calculo de la salida
_—| podria realizarse con
otro always en lugar
del assign

Estructura de Computadores — Pilar Parra

67

Instituto de

Microelectrénica
de Sevilla

Esquema de la unidad

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* QOperadores
 Parametros

 Maquinas de estado

* Directivas define e include
* Simulacion funcional

La directiva ‘define

* Se puede usar la directiva define para definir constantesy
macros que se reemplazan antes de la compilacion del codigo.

* Permite cambiar facilmente los valores de los simbolos sin
tener que editar el codigo.

e Sintaxis: define SIMBOLO valor

— Ejemplo:
‘define CLOCK_PERIOD 10 // Define una constante: el periodo de reloj

module testbench;
reg clk;

initial begin

clk = 0;

forever #("CLOCK_PERIOD / 2) clk = ~clk; // Generacidn del reloj
end

endmodule

La directiva ‘include

* Se puede usar la directiva ‘include para incluir archivos fuente
externos en un codigo.

— Se usa principalmente en testbenches para organizar mejor el codigo y
reutilizar definiciones evitando el tener que repetirlas en multiples
archivos.

e Sintaxis: include “archivo.sv”

— Ejemplo:
// constantes.sv module test;
‘define WIDTH 8 ‘include "constantes.sv" // Incluir archivo de constantes

‘define NUM_ENTRADAS 16
reg [WIDTH-1:0] data[NUM_ENTRADAS-1:0];

initial begin
Sdisplay("Ancho de datos: %0d", "WIDTH);
Sdisplay("Numero de entradas: %0d", 'NUM_ENTRADAS);
end
endmodule

Esquema de la unidad

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* QOperadores
 Parametros

 Maquinas de estado

* Directivas define e include
e Simulacion funcional

« Pasos para la simulacion:

— se debe disponer de la descripcion del modulo a simular
en Verilog

— hay que crear un modulo especial llamado testbench que:

. incll)Jiré una instancia del circuito a probar (dut: design under
test

* generara los estimulos necesarios para probar su
funcionamiento

— el testbench puede incluir bloques procedimentales: initial,
always, ...

— para observar las formas de onda durante la simulacion,
se usan comandos especificos:

« $dumpfile, Sdumpvars, $dumpon, $dumpoff...

Simulacion

* Nota: algunos entornos de disefio como ISE o Vivado no requieren
estos comandos pues usan su propio formato de volcado y permiten
afadir las ondas manualmente al simular

* Comando Sdumpfile:

— Sintaxis: Sdumpfile("nombre.vcd")

— Este comando indica el nombre del archivo donde se
guardara la informacion de la simulacion, generalmente en
formato VCD (Value Change Dump). Este contendra todos
los cambios de las senales que se especifiquen.

* Comandos Sdumpon y Sdumpoff:

— Permiten iniciar y detener el registro de datos durante la
simulacion para generar un archivo vcd mas pequefio

Estructura de Computadores — Pilar Parra 73

Instituto de

Simulacion e

 Comando Sdumpvars:
— Sintaxis: Sdumpvars(n, modulo)

— Con este comando se seleccionan las variables y senales que se
van a volcar en el archivo definido con Sdumpfile.

— Con Sdumpvars(0, top) se vuelcan todas las variables de todas
las instancias y médulos que forman parte de la simulacion, es
decir, se realiza un volcado global

— También se puede limitar el volcado especificando un modulo
concreto y el numero de niveles (n) de jerarquia al que se quiere
descender: Sdumpvars(n, instancia)

— Sdumpvars; es equivalente a Sdumpvars(0, top) en Verilog

Estructura de Computadores — Pilar Parra 74

Instituto de
Microelectrénica

de Sevilla

El testbench es
un médulo sin /
entradas ni
salidas
Se declaran
sefiales de
prueba para
conectarlas al
Se instancia el

méduloy
moduloy se

conectan a él las
sefales de prueba

En este bloque
initial se
incorporan los
comandos para que
se generen formas
de onda.

"

module tb_codificador_de_prioridad;

reg [3:0] entrada;
» wire [1:0] salida;
wire e;

codificador_de_prioridad dut (
.entrada(entrada),
.salida(salida),
.e(e)

);

) 4

initial begin

entrada =4'b0011;
#10;
entrada = 4'b0100;
#10;
entrada = 4'b1000;
#10;
entrada =4'b1010;
#10;
entrada =4'b0111;
#10;
Sfinish;
end
endmodule

Sdumpfile("codificador_de_prioridad.vcd");
Sdumpvars(0, tb_codificador_de_prioridad);
end

initial begin
entrada = 4'b0000;
#10;
entrada =4'b0001;
#10;
entrada = 4'b0010;
#10;

\

En este bloque initial
se fijan los valores de
las entradas y se
establece el final de la
simulacion.

Instituto de

Resultado de la simulacion i

* El simulador nos muestra entradas y salidas para los casos probados:
0000,0001,0010,0011,0100,1000,1010,0111

* (Cada valor se mantiene durante 10ns (ver mas adelante unidades)
* Lasalida nos muestra en cada caso el cddigo de la entrada mas prioritaria que valga 1.
* El bus de entrada ha sido desplegado para apreciar mejor las entradas

. El bus de salida se muestra en base 10

Value 0.000 ns 10.808 ns 20.000 ns 30.000 ns 40.000 ns 50.000 ns 60.000 ns 70.008 ns

T

Lt ientrada[B:Ol 7 114 B i T B 2 D G 3 : 4 g & a 4
é 3] ———[' '
s [2] ! |
e [1] ‘

s [0]

> W salida[1:0]

-
|

i:l;‘

. 2

Instituto de
Microelectrénica

de Sevilla

module tb_codificador_de_prioridad;

reg [3:0] entrada;
wire [1:0] salida;
wire e;

Otra opcidn para
la organizacion

del testbench codificador_de_prioridad dut (

.entrada(entrada),
.salida(salida),
.e(e)

);

initial begin

Sdumpfile("codificador_de_prioridad.vcd");
Sdumpvars(0, tb_codificador_de_prioridad);

end

En este bloque
initial begin

initial solo se trada = 4’60000
. entrada = ;
proporciona el ’
valor inicial de Ias\A #160; En este bloque always
Sfinish: se cubren todas las

entradasy se ubr
establece el final end ~ posibilidades de
entrada.

de la simulacion _
always begin

#10;
entrada = entrada + 1'b1;

end
Estructura de Computadores — P| ondmodule 77

Resultado de la simulacion

* El simulador nos muestra entradas y salidas para todos los casos posibles de entrada (son 16):
0000,0001,0010, ..., 1101,1110,1111

* Cada valor se mantiene durante 10ns (ver mas adelante unidades)
* Lasalida nos muestra en cada caso el codigo de la entrada mas prioritaria que valga 1.
* El bus de entrada ha sido desplegado para apreciar mejor las entradas

* El bus de salida se muestra en base 10

Name Value 0.000 ns 20.000 ns i 80.000 ns 100.000 ns 120.000 ns 140.000 ns
W entrada[3:0]
s [3]
¢ [2]

¢ [1]

. [0]

W salida[l:0]

W = =

o

Unidades de tiempo

* Eltiempo se puede expresar con el simbolo # seguido de un
valor numérico entero o en punto fijo seguido (sin espacio) por
una unidad de tiempo (fs ps ns us ms s)

— Ejemplo: #10ns

e Existe una directiva timescale que fija las unidades de tiempo
y la precision en la simulacion

— Sintaxis: ‘timescale unidad/precisién
* Ejemplo: ‘timescale 1ns/100ps (usar 1, 10, 100)

* Sial expresar el tiempo no se incluyen unidades se entiende
gue se usa la indicada en la directiva timescale

— El simulador redondea las cantidades a la precision establecida.

Instituto de

Salida por pantalla s

* Se puede imprimir informacion durante la simulacion
mediante las funciones Sdisplay y Smonitor. Ambas escriben
con formato.

* Sdisplay imprime el mensaje una sola vez: en el punto donde
se incluye.

— Ejemplo:
» Sdisplay ("Valor de la sefial A =%0d", A);

* Smonitor se escribe una sola vez, pero imprime el mensaje
cada vez que cambia alguna de las variables incluidas en su
lista.

— Ejemplo:
* Smonitor ("Tiempo: %0d , A =%0d , B = %0d", Stime, A, B);

Salida por pantalla: Sdisplay, ejemplo 'Msn'%

‘timescale 1ns/1ns «—— | Incluimos la directiva "timescale para fijar
module tb_codificador_de_prioridad; las unidades de tiempo y la precisién
initial begin
entrada = 4'b0000; ; _ ~ o ~
Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e); Tiempo 10: entrada = 0000, salida = 00, e = 1
#10; Tiempo 20: entrada = 0001, salida=00,e =0
entrada = 4'b0001; Tiempo 30: entrada = 0010, salida=01,e=0
Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e); Tiempo 40: entrada = 0011, salida=01,e=0
#10; Tiempo 50: entrada = 0100, salida=10,e=0
entrada = 4'b0010; Tiempo 60: entrada = 1000, salida=11,e=0
Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e); Tiempo 70: entrada = 1010, salida=11,e=0
#10; . Tiempo 80: entrada = 0111, salida=10,e=0
entrada = 4'b0011; testbench.sv:66: S$finish called at 80 (1ns)
Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e);
#10; A

entrada = 4'b0100;

Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e);
#10;

entrada =4'b1000;

Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e);

#10; - La salida por pantalla
entrada = 4’b1010; \ muestra los resultados
Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e); con el formato solicitado
entrada =4’b0111;

en el testbench
#10;

Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e);

Salida por pantalla: Smonitor, ejemplo '.“c“nsn'%

“timescale 1ns/1ns
module tb_codificador_de_prioridad,;

initial begin

Smonitor ("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e);

entrada = 4'b0000;
#10;
entrada = 4'b0001;
#10;
entrada = 4'b0010;
#10;
entrada =4'b0011;
#10;
entrada = 4'b0100;
#10;
entrada = 4'b1000;
#10;
entrada =4'b1010;
#10;

Tiempo 10:
Tiempo 20:
Tiempo 30:
Tiempo 40:
Tiempo 50:
Tiempo 60:
Tiempo 70:
Tiempo 80:
testbench.sv:26: Sfinish called at 80 (1ns)

entrada = 0000, salida =00, e
entrada = 0001, salida =00, e
entrada = 0010, salida =01, e
entrada = 0011, salida=01,e=0
entrada = 0100, salida=10,e=0
entrada = 1000, salida=11,e=0
entrada = 1010, salida=11,e=0
entrada = 0111, salida=10,e=0

1
0
0

entrada =4'b0111;

Con una Unica linea
conseguimos el mismo
efecto

Instituto de
Microelectrénica
de Sevilla

Simulacion (ejemplo [)

e Contador moédulo 256y
testbench:

Instituto de
Microelectrénica
de Sevilla

module simple_counter (
input wire clk, rst,
output reg [7:0] count);

always @(posedge clk or posedge rst)
begin
if (rst)
count <= 8'd0;
else
count <= count + 1;
end

endmodule

Estructura de Computadores — Pilar Parra

module test_repeat_loop;
reg clk,rst;
wire [7:0] count;

simple_counter uut (

.clk (clk),
.rst (rst),
.count (count));

always begin

La organizacion es la ya vista:
- creacion de un mddulo,

- declaracion de sefales,

- instanciacion y conexion
del mdédulo a probar

#5 clk =~clk; <« generacion de la sefial de reloj

end

initial begin

generacion de estimulos

clk=0;
rst=1;
#12;
rst=0;

repeat (20) @(posedge clk);

T~

Sfinish;
end
endmodule

con esta linea esperamos
20 ciclos de reloj

83

Instituto de

Resultado de la simulacion i

* El simulador muestra las entradas: c/k y rst y la salida de 8 bits del contador count
* Elreloj es de periodo 10 tal y como se ha definido.

* Enlasalida se puede apreciar el reset inicial, y durante 20 ciclos de reloj la
evolucion del estado del contador en decimal: 0->19

R =R

rt 1]
Jé conir) S &3 G5 &5 &0 G5 G5 60 €GB €3 £3 63 €0 E3 6 € €0 £ 0

Instituto de

Simulacion (ejemplo 1) s

e Contador modulo 8 con

. module test_counter; initial begin
dacarreo.
reg clk,rst; clk=0;
wire [2:0] count; rst=1;
module mod8_counter (_ [2:0]
: : wire cy; #15;
input wire clk, rst,
output reg [2:0] count, mod8_counter uut (rst=0; »
output reg cy); ik (clk), repeat (10) @(negedge clk);
rst=1;
.rst (rst),
always@(posedge clk or posedge rst) count (count) @(negedge clk);
begin ' rst=0;
6 .cy(cy));
if (rst) repeat(5) @(posedge clk)
count <= 3'd0; always begin Sfinish;
else #5 clk = ~clk; end
count <=count + 1; end endmodule
end
assign cy = (count ==3'b111); -
endmodule .
Podemos usar referencias
a ambos flancos de reloj

Estructura de Computadores — Pilar Parra 85

Resultado de la simulacion

* El simulador muestra las entradas clk y rst y las salidas: los 3 bits del
contador (count) y la salida de carry (cy)

* Enlasalida se aprecian:

— el reset inicial y el ciclo completo de cuenta
— la activacion de la salida de carry en el estado 7 (Ultimo estado de cuenta)
— otro reset que lleva al contador de nuevo al valor inicial (0)

* Esimportante destacar que el reset se produce de forma asincrona, sin

necesidad de esperar a la senal de reloj, haciendo que el estado 2 no
dure un ciclo de relo;j.

— Esto es debido a que dicha sefial se ha incluido en la lista de sensibilidad del
always al definir el modulo.

Name Value | [EEEEEEES

& Clk

® rst

» & count[2:0]

e CY

Instituto de

Resultado de la simulacion i

* Sise desea que la senal de reset sea sincrona basta con excluirla de |a
lista de sensibilidad.

* la respuesta en este caso es:

ATET=0 (O - 000 ns
Clk
& rst
- B count{2:0]

& I::'f,l'

Con always @(posedge clk) /
rst es sincrona Con always @(posedge clk or posedge rst)
/ rst es asincrona
Name Value | [EEEEEEES

& Clk

® rst

» & count[2:0]

e CY

Simulacién(ejemplo Ill): registro universal '.“c“nsn'%izﬂfc‘iééfﬁ’;?%m

El registro universal puede realizar todas las operaciones:

— desplazamiento a derecha e izquierda,

— carga en paralelo (operacidn de escritura) Recordamos

el modulo

— inhibicién (guardar el dato)

— puestaa O

serial_in_left data_in[7:0] serial_in_right

op[1:0] | operacion

00 inhibicidon

op[1:0] = reg_univ(8] 01 | shift left
rst — A 10 shift right

| | 11 escritura

clk data_out[7:0]

Simulacion(ejemplo Il1)

IMSE IMnstitulto de
icroelectrénica
-cnm de Sevilla

module reg_univ #(parameter WIDTH = 8)(

input wire clk, rst,
input wire [1:0] op,
input wire serial_in_left, serial_in_left

input wire serial_in_right,

data_in[7:0] serial_in_right

input wire [WIDTH-1:0] data_in,
. op[1:0] — iv[8
output reg [WIDTH-1:0] data_out reg_univ[8]
); rst — A
always @ (posedge clk, posedge rst) begin | |
if (rst) clk data_out[7:0]
data_out <= ‘0;
else
case (op) Recordamos
2'b00: data_out <= data_out; el médulo
2'b01: data_out <= {data_out[WIDTH-2:0], serial_in_right};
2'b10: data_out <= {serial_in_left, data_out [WIDTH-1:1]};
2'b11: data_out <=data_in;
default: data_out <= ‘0; begin
endcase data_out <= data_out<<1;

end
endmodule

data_out[0] <= serial_in right
end

Simulacion(ejemplo IlI) 'MS,E

module tb_reg_univ; serial_in_left data_in[7:0] serial_in_right
parameter WIDTH = 8; initial begin |
Sdumpfile ("dump.ved");
reg clk; Sdumpvars (0, tb_reg_univ); op[1:0]—] reg_univ[8]
reg rst; end st — A
reg [1:0] op; |
reg serial_in_left; initial begin ok data_out[7:0]
reg serial_in_right; rst=1;
reg [WIDTH-1:0] data_in; op = 2'b00;
wire [WIDTH-1:0] data_out; data_in ='0; @(posedge clk);
serial_in_left = 0; op = 2'b01; // Shift left
reg_univ #(WIDTH(WIDTH)) dut (serial_in_right = 0; serial_in_right =1; //Bitque entra
.clk(clk), @(posedge clk);
.rst(rst), #10;
.op(op), rst = 0; //desactiva reset
.serial_in_left(serial_in_left), @(posedge clk);
.serial_in_right(serial_in_right), @(posedge clk); op =2'b10; // Shift right
.data_in(data_in), op =2'b11; // carga en paralelo serial_in_left=1; //Bit que entra
.data_out(data_out) data_in = 8'hA5; // Valor de prueba @(posedge clk);
); @(posedge clk);
// Finalizacion de la simulacidn
initial begin @(posedge clk); #20;
clk = 0; op =2'b00; //inhibicidn $finish;
forever #5 clk = ~clk; data_in = 8'hFF; // data_in no afecta end
end @(posedge clk); endmodule

Test del registro universal: resultado 'Msn'%

Reset inicial Carga Inhibicion Left Right

Y T T
5 E"—ll’-l-l\‘.'-lﬁli‘-l-l'l"rl‘-l'

> W op[1:0]

ﬁq=g='q=ﬂ===~.==

11111111

op[1:0] | operacion
00 inhibicion
01 shift left

10 shift right
11 escritura

	Slide 1: Tema 1 Introducción a Verilog
	Slide 2: Objetivos
	Slide 3: Esquema de la unidad
	Slide 4: Aspectos básicos de Verilog
	Slide 5: Aspectos básicos de Verilog
	Slide 6: Aspectos básicos de Verilog
	Slide 7: Aspectos básicos de Verilog
	Slide 8: Aspectos básicos de Verilog
	Slide 9: Aspectos básicos de Verilog
	Slide 10: Aspectos básicos de Verilog
	Slide 11: Aspectos básicos de Verilog
	Slide 12: Aspectos básicos de Verilog
	Slide 13: Aspectos básicos de Verilog
	Slide 14: Aspectos básicos de Verilog
	Slide 15: Aspectos básicos de Verilog
	Slide 16: Aspectos básicos de Verilog
	Slide 17: Aspectos básicos de Verilog
	Slide 18: Esquema de la unidad
	Slide 19: Tipos de datos en Verilog
	Slide 20: Constantes en Verilog
	Slide 21: Tipos de datos en Verilog
	Slide 22: Esquema de la unidad
	Slide 23: Vectores y arrays
	Slide 24: Vectores y arrays
	Slide 25: Vectores y arrays
	Slide 26: Esquema de la unidad
	Slide 27: Literales y bases
	Slide 28: Esquema de la unidad
	Slide 29: Procedimientos: sentencias condicionales
	Slide 30: Procedimientos: sentencias condicionales
	Slide 31: Procedimientos: sentencias condicionales
	Slide 32: Procedimientos: sentencias condicionales
	Slide 33: Procedimientos: sentencias condicionales
	Slide 34: Procedimientos: sentencias condicionales
	Slide 35: Procedimientos: sentencias condicionales
	Slide 36: Procedimientos: bucles
	Slide 37: Procedimientos: bucles
	Slide 38: Procedimientos: bucles
	Slide 39: Procedimientos: bucles
	Slide 40: Procedimientos: bucles
	Slide 41: Procedimientos: bucles
	Slide 42: Esquema de la unidad
	Slide 43: Operadores
	Slide 44: Operadores
	Slide 45: Operadores
	Slide 46: Operadores
	Slide 47: Operadores
	Slide 48: Operadores
	Slide 49: Operadores
	Slide 50: Operadores
	Slide 51: Operadores
	Slide 52: Operadores
	Slide 53: Operadores
	Slide 54: Esquema de la unidad
	Slide 55: Constantes en Verilog
	Slide 56: Módulos parametrizables
	Slide 57: Módulos parametrizables
	Slide 58: Módulos parametrizables
	Slide 59: Constantes en Verilog
	Slide 60: Ejemplo: registro universal
	Slide 61: Ejemplo: registro universal
	Slide 62: Esquema de la unidad
	Slide 63: Descripción de máquinas de estado
	Slide 64: Descripción de máquinas de estado
	Slide 65: Descripción de máquinas de estado
	Slide 66: Descripción de máquinas de estado
	Slide 67: Descripción de máquinas de estado
	Slide 68: Esquema de la unidad
	Slide 69: La directiva `define
	Slide 70: La directiva `include
	Slide 71: Esquema de la unidad
	Slide 72: Simulación funcional en Verilog
	Slide 73: Simulación
	Slide 74: Simulación
	Slide 75: Organización de un testbench
	Slide 76: Resultado de la simulación
	Slide 77: Organización de un testbench
	Slide 78: Resultado de la simulación
	Slide 79: Unidades de tiempo
	Slide 80: Salida por pantalla
	Slide 81: Salida por pantalla: $display, ejemplo
	Slide 82: Salida por pantalla: $monitor, ejemplo
	Slide 83: Simulación (ejemplo I)
	Slide 84: Resultado de la simulación
	Slide 85: Simulación (ejemplo II)
	Slide 86: Resultado de la simulación
	Slide 87: Resultado de la simulación
	Slide 88: Simulación(ejemplo III): registro universal
	Slide 89: Simulación(ejemplo III)
	Slide 90: Simulación(ejemplo III)
	Slide 91: Test del registro universal: resultado

