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Introducción a Verilog
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• Presentar las características básicas del lenguaje de 
descripción de hardware Verilog

• Introducir las palabras claves del lenguaje y sus reglas

• Introducir el diseño jerárquico

• Presentar los tipos de datos, operadores y estructuras del 
lenguaje

• Mostrar la descripción de módulos básicos 
combinacionales y secuenciales

• Mostrar la descripción de estímulos para simulación 
(testbench)

Objetivos
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• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos: 

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad
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• Descripción de módulos de 
diseño

– Comienza con la palabra clave 
module

– Se declaran la lista de entradas y 
salidas del módulo 

– Se pueden agrupar entradas (o 
salidas) si son del mismo tamaño

– En el cuerpo del módulo se 
describe el comportamiento del 
mismo

– Se termina con la palabra clave 
endmodule

module halfadd (
input wire a,b,
output wire sum, carry);

assign sum = a^b;
assign carry= a&b;

endmodule

Aspectos básicos de Verilog

halfadd
a

b

sum

carry
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• Descripción de módulos de 
diseño

– assign se utiliza para definir 
una expresión lógica

– ^ es la op. exclusive-OR

– & es la op. and

– Las palabras clave son siempre 
en minúsculas

– Verilog es “case-sensitive”: 
diferencia mayúsculas y 
minúsculas

module halfadd (
input wire a,b,
output wire sum,carry);

assign sum = a^b;
assign carry= a&b;

endmodule

Aspectos básicos de Verilog

halfadd
a

b

sum

carry
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• Reglas para los comentarios y el formato:

– Se pueden escribir comentarios de línea y de bloque
• Los comentarios de línea comienzan a partir de dos barras 

consecutivas (//) y terminan al final de la línea.

• Puede ser una línea completa o solo la parte final 

• Los comentarios de bloque comienzan con (/*) y terminan 
con (*/) 

– Verilog es un lenguaje sin formato
• Se puede organizar el código como se quiera

• Se recomienda usar espacios, tabulaciones y fin de línea, de 
modo que el código sea legible

• En general, no se debería poner más de una sentencia 
ejecutable por línea.

Aspectos básicos de Verilog
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• Diseño jerárquico:

– Podemos construir nuevos módulos a partir de otros

Aspectos básicos de Verilog

a

b
cin

sum

carry
fulladd

a

b

sum

carry

halfadd

a

b

sum

carry

halfadd
a

b

cin

U1 U2

sum

carry

w1

w2

w3
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• Diseño jerárquico:
– Es necesario:

• Declarar las variables locales

• Instanciar los módulos

– Dar a cada instancia un nombre

– Conectar los puertos de entrada 
y salida de cada instancia

Aspectos básicos de Verilog

a

b

sum

carry

halfadd
a

b

sum

carry

halfadd
a

b

cin

U1 U2

sum

carry

module fulladd (input wire a, b, cin, 
output wire sum, carry);

wire w1,w2,w3;

halfadd U1( .a(a), .b(b), .sum(w1), .carry(w2) );
halfadd U2( .a(w1), .b(cin), .sum(sum), .carry(w3) );

assign carry = w2 | w3;

endmodule

w1

w2

w3
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• Conexión posicional vs conexión nombrada

– Se pueden conectar puertos y variables respetando el orden de 
la declaración de los puertos en el módulo (conexión posicional)

– No es recomendable, es fácil cometer errores
– Es preferible usar la conexión nombrada (la vista anteriormente)

Aspectos básicos de Verilog

module halfadd (
input wire a,b,
output wire sum,carry);

assign sum a^b;
assign carry= a&b;

endmodule

module fulladd (input wire a, b, cin, 
output wire sum, carry);

wire w1,w2,w3;

halfadd U1(a,b,w1,w2);
halfadd U2(w1,cin,sum,w3);

assign carry = w2 | w3;

endmodule
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• Tipos de descripción:

– Descripción funcional

– Descripción estructural

– Descripción procedimental

Aspectos básicos de Verilog
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• Tipos de descripción:

– Descripción funcional: 
• Se realizan asignaciones de forma continua utilizando assign

• Representa conexiones directas de hardware que están 
constantemente activas y responden inmediatamente a 
cambios en sus entradas

• Modela lógica combinacional

• Todas las sentencias assign se ejecutan concurrentemente

Aspectos básicos de Verilog

module halfadd (

input wire a,b,

output wire sum,carry

);

assign sum = a^b;

assign carry= a&b;

endmodule
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• Tipos de descripción:

– Descripción estructural: 
• Se conectan módulos que ya están definidos previamente 

mediante instanciación

• Las puertas lógicas básicas ya están predefinidas (and, nand, 
or,nor, xor, xnor, not, buf, etc.)

• Es muy útil para la interconexión de módulos creados previamente 
(diseño jerárquico)

Aspectos básicos de Verilog

module fulladd (input wire a, b, cin, 
output wire sum, carry);

wire w1,w2,w3;

halfadd U1(a,b,w1,w2);
halfadd U2(w1,cin,sum,w3);

assign carry = w2 | w3;
endmodule
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• Tipos de descripción:

– Descripción procedimental: 

• Permite el uso de estructuras de control similares a las 
de los lenguajes de programación

• Se estructura en bloques procedimentales o procesos

• Todos los bloques procedimentales se ejecutan 
concurrentemente

• Dentro de cada proceso las instrucciones se ejecutan 
en el orden en que están escritas (flujo secuencial)

Aspectos básicos de Verilog
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• Bloques procedimentales
– Pueden definir comportamientos complejos, como lógica 

combinacional repetitiva o condicional
– Pueden definir circuitos con memoria (secuenciales)
– Pueden definir bancos de estímulos (testbenches) para 

simulaciones
– Fundamentalmente hay dos tipos de bloques procedimentales:

• tipo always: Se ejecutan continuamente (cíclicamente)
• tipo initial: Se ejecutan linealmente (de principio a fin una sola vez)

Aspectos básicos de Verilog

always @(a, b, sel)
if(sel== 1) 

op = b;
else

op = a;

initial
begin

a = 1;
b = 0;
sel = 1;
#10ns;
sel= 0;
...

end
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• Bloques procedimentales

– Cuando hay más de una sentencia en un bloque, 
estas han de agruparse mediante begin y end

Aspectos básicos de Verilog

always @(a, b, sel)
if(sel== 1) 

op = b;
else

op = a;

initial
begin

a = 1;
b = 0;
sel = 1;
#10ns;
sel= 0;
...

end
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• Ejemplo de concurrencia
– Un módulo puede contener múltiples bloques procedimentales (initial, 

always) y múltiples sentencias assign y no hay orden de ejecución 
entre ellos sino que se ejecutan en paralelo (concurrencia)

– Dentro de un procedimiento las sentencias se ejecutan 
secuencialmente en orden de aparición

Aspectos básicos de Verilog

module ejemplo1 (

input wire x,
input wire y,
input wire z, 

output wire f1);

assign f1 = x & y & z;

endmodule

module ejemplo2 (

input wire x,
input wire y,
input wire z, 

output wire f1);

wire f0; 

assign f0 = x & y;
assign f1 = f0 & z;

endmodule

always begin // a periodica T=10

#5 a = ~a; 
end

always begin
#10 b = ~b; // b periodica T=20
end

initial begin
a=0;

b=0;
#500;

$finish;

end

definen la misma 

función
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• Bloques procedimentales
– Cada bloque always se ejecuta (dispara) cuando hay un evento en 

alguna variable de su lista de sensibilidad que viene determinada 
por una @

– En lógica combinacional la lista de sensibilidad debe incluir todas 
las variables

– Para la lógica secuencial el evento suele ser el flanco de una señal, 
es decir, se disparan en una transición específica de una 
determinada señal.

– Se utilizan las palabras clave posedge y negedge

Aspectos básicos de Verilog

always @(a, b, sel)
if(sel== 1) 

op = b;
else

op = a;

always @(posedge clock)
q<=d;

Lista de
sensibilidad
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• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos: 

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad
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– Nets, para representar conexiones. No almacenan valores. 
• Se usan sobre todo para conexiones entre módulos: wire (el más 

común y el tipo por defecto). 
• Se usan en asignaciones continuas (assign), nunca en bloque 

procedimentales.

– Variables, para almacenar valores. 
• El más importante: reg. Otros: integer (entero con signo de 32 

bits), real, time…
• Se usan en bloques procedimentales (always, initial)

– Tipos compuestos: 
• vectores: cualquier wire o reg puede ser vectorial,

– reg [15:0] data; 
– wire [3:0] opcode;

• arrays: para memorias o bancos de registros,
– reg [7:0] memoria[0:255];

Tipos de datos en Verilog
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– parameter: constante válida en un módulo que 
permite crear bloques genéricos personalizables, 
su valor puede modificarse al instanciar el módulo

– localparam: constante cuyo valor es fijo y no se 
puede modificar

Constantes en Verilog
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• Tipos por defecto y declaraciones implícitas

– Una declaración sin tipo es wire por defecto
– Una errata en un nombre de variable puede llevar a una declaración implícita 

como wire
– Lo recomendable es declarar completamente todas las variables
– También se puede usar la directiva `default_nettype none de esta forma se 

genera un error si se intenta usar una variable no declarada

Tipos de datos en Verilog

module halfadd (

input wire a, b,

output sum, carry);

assign sum = a^b;

assign carry = a&b;

endmodule

module fulladd (input wire a, b, cin, 
output wire sum, carry);

wire w1,w2,w3;

halfadd U1( .a(a), .b(b), .sum(w1), .carry(ww2) );
halfadd U2( .a(w1), .b(cin), .sum(sum), .carry(w3) );

assign carry = w2 | w3;

endmodule

No
declarada
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• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos: 

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad
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• Al declarar un vector se define su tamaño (rango máximo) 

– Puede ser descendente o ascendente
– Puede contener expresiones (constantes y conocidas antes de la 

simulación)
– Por defecto las componentes del vector no tienen signo, si se 

quieren cantidades con signo, serán en notación complemento a 
2 y se ha de declarar como reg signed

Vectores y arrays

reg signed [7:0] svec8;
reg [7:0] usvec8;

initial begin
svec8 = 8'b11001101; // -51
usvec8 = 8'b11001101;  // 205

. . .

parameter N=8;
reg [N-1:0] in; 

module mux4 (
input wire [3:0] a,b,
input wire sel,
output reg [3:0] op

);
always @(a, b, sel)

if(sel== 1) 
op = b;

else
op = a;

endmodule
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• Verilog permite arrays (matrices)

– De cualquier tipo
– Con cualquier número de dimensiones (a nivel RT se usan dos 

dimensiones)

• Los arrays multidimensionales se usan para 

– Modelar memorias
– Declarar grupos de registros

Vectores y arrays

07

07

.

.

.

registro[0]

registro[15]

data_in

8

data_in

8

data_out

8

data_out

8
wen rst

/* Declaración de un array de 16 registros de 
8 bits */
reg [7:0] registro [0:15]; 

// registro   == array de bits
// registro [5]   == uno de los registros de 8  
//                            bits  (el 6º)
// registro[5][2] == bit 2 del registro[5]
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• Ejemplo:

module memoria_simple (
input wire clk, 
input wire we, 
input wire [7:0] addr, 
input wire [7:0] data_in, 
output wire [7:0] data_out
); 

reg [7:0] mem [255:0];

always @(posedge clk) begin
if (we) begin

mem[addr] <= data_in;
end

end
assign data_out = mem[addr];

endmodule

Vectores y arrays
we

addr
data_in

88

8

data_out
clk

Esta memoria contiene 256
palabras de 8 bits

Asignamos data_in (8 bits) 
al byte dado por mem[addr],

por ejemplo, si addr que es un 
vector de 8 bits contiene el 
valor  00110110 -> 54 
haríamos mem[54] <- data_in
(ambos son vectores de 8 bits)
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• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos: 

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad
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• Un literal numérico es una representación explícita y fija 
de un valor

– Permiten especificar el ancho, la base y el valor 
• 8'd255: Literal de 8 bits en base decimal con valor 255  (1111 1111)

• 16'hA5A5: Literal de 16 bits en base hexadecimal con valor A5A5 
(1010 0101 1010 0101)

• 4'b1010: Literal de 4 bits en base binaria con valor 1010

• 8'b1010_0101: Se admiten “_” para mejorar la legibilidad

• 8’o123: Literal de 8 bits en base octal con valor 123 (01010011)

• Si se omite, la base por defecto es 10 

• Cuando asignamos un literal a un vector no es necesario 
que tengan el mismo tamaño

– El valor se extiende con 0 o se trunca al tamaño del vector

Literales y bases
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• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos: 

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad
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• Sentencia condicional if-else

– Su sintaxis es:
if (expresion)

comando1;

else

comando2;

– También:

if (expresion1)

comando1;

else if (expresion2)

comando2; 

else if (expresion3) 

comando3; 

else comando4;

Procedimientos: sentencias condicionales
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• Sentencia condicional if-else, ejemplo (I):

module flip_flop_d_reset( 

input wire clk, rst, d, 

output reg q

); 

always@(posedge clk) begin

if (rst == 1'b1) 

q <= 1'b0; 

else

q <= d; 

end

endmodule

Procedimientos: sentencias condicionales

d
q

rst

clk

rst d q

1 X
0    0
0    1

0
0
1
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• Sentencia condicional if-else, ejemplo (II):

module contador_con_reset ( 

input wire clk, rst, up,

output reg [3:0] cuenta ); 

always@(posedge clk) begin

if (rst == 1'b1) 

cuenta <= 4'b0000; 

else if (up == 1’b1) 

cuenta <= cuenta + 1; 

end

endmodule

Procedimientos: sentencias condicionales

up

cuenta

rst
clk

4

rst up cuenta

1 X
0    1
0    0

0
cuenta + 1

cuenta

Para rst asíncrono, se debe incluir el 
mismo en la lista de sensibilidad:

always @(posedge clk, posedge rst)
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• Sentencia condicional if-else, ejemplo (III):

module comparador( 
input wire [3:0] a, b,
output reg g, e, l); 

always @* begin
g=0;
e=0;
l=0; 
if (a>b) 

g=1;
else if (a<b)

l=1; 
else

e=1;
end

endmodule

Procedimientos: sentencias condicionales

a a>b
comparador

4

4
b

a=b

a<b

g

e

l 

g e l

a > b
a = b
a < b

1 0 0
0 1 0
0 0 1
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• Sentencia case

– Su sintaxis es:
case (expresion)

valor1: sentencia1;

valor2: sentencia2;

valor3: sentencia3;

default: sentencia4;

endcase

– default es opcional, aunque recomendable

Procedimientos: sentencias condicionales
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• Sentencia case, ejemplo (I):
module multiplexor_4a1 ( 

input wire [1:0] sel,

input wire [3:0] data_in, 

output reg data_out ); 

always @* begin

case (sel)

2'b00: data_out = data_in[0]; 

2'b01: data_out = data_in[1];

2'b10: data_out = data_in[2]; 

2'b11: data_out = data_in[3];

default: data_out = 1'bx;  // Valor 'x' para el caso por defecto 

endcase // p.ej: si sel valiese 2'b0x, 2'bx1, 2'bxz, etc.

end

endmodule

Procedimientos: sentencias condicionales

2

data_out

data_in[0] 0
1
2
3

data_in[1]
data_in[2]

data_in[3]

sel
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• Sentencia case, ejemplo (II):
module alu_simple (

input wire [1:0] op,

input wire [3:0] a,

input wire [3:0] b,

output reg [3:0] result);

always @* begin

case (op) 

2'b00: result = a + b; // Suma

2'b01: result = a - b; // Resta 

2'b10: result = a & b; // AND 

2'b11: result = a | b; // OR

default: result = 4'bx; // Valor 'x’ del caso por defecto

endcase

end

endmodule

Procedimientos: sentencias condicionales

result

a b

op

44

2

4

op[1:0] result

0 0
01
10
11

a+b
a-b

AND(a,b)
OR(a,b)
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• Bucle for

– Su sintaxis es:
for (initializacion; expresion; step)

sentencia;

– El bucle for comienza con la inicialización y evalúa 
la expresión, si esta se cumple realiza la sentencia 
y ejecuta la función step.

– Permite escribir código más compacto y legible si 
se trabaja con estructuras repetitivas

Procedimientos: bucles
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• Bucle for, ejemplo (I): 

module paridad_impar_4bits(
input wire [3:0] a,
output reg paridad);

integer i;
always @* begin

paridad = 1'b0;
for (i = 0; i <= 3; i=i+1)

paridad = paridad ^ a[i];
end

endmodule

Procedimientos: bucles

a[3:0] paridad

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

. . .
1 1 0 1
1 1 1 0
1 1 1 1

0
1
1
0

. . .
1
1
0

paridad

0
a[0]
a[1] xor a[0],
a[2] xor a[1] xor a[0]
a[3] xor a[2] xor a[1] xor a[0]

Estos valores va 

tomando la salida 
en cada iteración
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• Bucle for, ejemplo (II): 

module banco_registros ( 
input wire clk, rst, wen, 
input wire [3:0] addr [0:15],  
input wire [7:0] data_in [0:15], 
output wire [7:0] data_out [0:15] );

reg [7:0] registro [0:15]; // Declaración de un array de 16 registros de 8 bits
integer i;

// Lógica de escritura
always @(posedge clk) begin

if(rst) 
for (i = 0; i < 15; i=i+1) 

registro[i] <= 8'b00000000; 
else if (wen)

registro <= data_in; 
end

// Lógica de lectura 
assign data_out = registro;

endmodule

Procedimientos: bucles

07

07

.

.

.

registro[0]

registro[15]

data_in[0]

8

data_in[15]

8

data_out[0]

8

data_out [15]

8
wen rst
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• Bucle repeat

– Su sintaxis es:
repeat (expresion)

sentencia;

– El bucle repeat evalúa la expresión para obtener un número y 
ejecuta la sentencia el número de veces especificado.

– Muy usado en simulación (testbenches)

Procedimientos: bucles

// Generación de reloj: 
//20 ciclos de periodo 10 
repeat (20) begin
      #5 clk = ~clk;
end

Ejemplo:
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• Bucle forever: 

– Su sintaxis es:

forever sentencia;

– se ejecuta siempre

– sirve para definir señales en test benches para simulación

– Ejemplo:

// Generación de reloj: periodo 10 unidades

initial begin

clk = 0; 

forever #5 clk = ~clk; 

end

Procedimientos: bucles
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• Bucle while: 

– Su sintaxis es:

while (condición)

sentencia;

– ejecuta una sentencia hasta que una determinada expresión es falsa

– Ejemplo: 

//Espera los ciclos de reloj necesarios hasta que completed ==1

while (completed != 1)

@(negedge clk); 

Procedimientos: bucles
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• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos: 

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad
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• Existen muchos operadores, algunos ya han 
ido apareciendo, se pueden clasificar en tipos

– Aritméticos 

– Relacionales

– Lógicos

• De bits, de palabras (bit a bit), de reducción

– De desplazamiento

– De concatenación y replicación

– Condicional ternario

– De asignación bloqueante y no bloqueante

Operadores
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• Operadores aritméticos

• Suma: +
• a + b
• Suma de dos valores.

• Resta: -
• a - b
• Resta de dos valores.

• Multiplicación: *
• a * b
• Multiplicación de dos valores.

• División: /
• a / b
• División de dos valores (si ambos son enteros, es división entera).

• Módulo (Residuo): %
• a % b
• Devuelve el residuo de la división.

Operadores



Estructura de Computadores – Pilar Parra 45

• Operadores Relacionales y de Comparación
• Igualdad lógica: ==

• a == b
• Devuelve 1 (true) si a es igual a b.

• Desigualdad lógica: !=
• a != b
• Devuelve 1 (true) si a es diferente de b.

• Mayor que: >
• a > b

• Menor que: <
• a < b

• Mayor o igual que: >=
• a >= b

• Menor o igual que: <=
• a <= b

Operadores
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• Operadores lógicos (booleanos)

• AND lógico: &&

• a && b

• True si ambos a y b son true (1).

• OR lógico: ||

• a || b

• True si al menos uno de a o b es true (1).

• NOT lógico: !

• !a

• True si a es false (0).

Operadores
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• Operadores bit a bit

• AND bit a bit: &
• a & b
• Operación AND entre cada bit de a y b.

• OR bit a bit: |
• a | b
• Operación OR entre cada bit de a y b.

• XOR bit a bit: ^
• a  ̂b
• Operación XOR entre cada bit de a y b.

• NOT bit a bit: ~
• ~a
• Niega cada bit de a

• Combinaciones de los mismos: 
• NAND ~&, NOR ~|, XNOR ~^ o ^~

Operadores

- Ejemplos

reg [3:0] vector1, vector2, vector3;

reg [3:0] num;

initial begin

vector1 = 4'b1001;

vector2 = 4'b1010;

vector3 = 4'b11x0;

num = ~ vector1; // num = 0110

num = vector1 & 4'b0111; // num = 0001

num = vector1 & vector2;  // num = 1000

num = vector1 | vector2; // num = 1011 

num = vector2 & vector3; // num = 10x0

num = vector2 | vector3; // num = 1110

end
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• Operadores de reducción
– Aplican una operación bit a bit y generan un único bit de 

resultado:

• AND de reducción: &a

• OR de reducción: |a

• XOR de reducción: ^a

• NAND de reducción: ~&a

• NOR de reducción: ~|a

• XNOR de reducción: ~^a o ^~a

– Ejemplos: 
• Si a = 4'b1010, &a = 1 & 0 & 1 & 0 = 0

• Con reg [3:0] q;  &q = q[3]& q[2]& q[1]& q[0]

– En el ejemplo de la transparencia 37, bastaría hacer: 
• assign paridad = ^a;

Operadores
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• Operadores de desplazamiento
• Desplazamiento lógico izquierda : <<

• a = a << n; (despl. a izq., rellena con 0 por la dcha.)
• Desplazamiento lógico derecha : >>

• a = a >> n; (despl. a dcha., rellena con 0 por la izq.)
• Desplazamiento aritmético derecha con asignación: >>>

• a = a >>> n; (despl. a dcha., rellena con el bit de signo por la izq.)

- Ejemplos:

reg [7:0] vector1 , vector2;
reg signed [7:0] vectorsigno;
initial begin

vector1 = 8'b10011001;
vectorsigno = 8'b10011001;
vector2 = vector1 << 3;      // 11001000 (entran 0 por la dcha.) 
vector2 = vector1 >> 1; // 01001100 (entra un 0 por la izq.)
vector2 = vectorsigno >>> 1; // 11001100 (preserva signo)

end

Operadores
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• Operadores de Concatenación y Replicación

• Concatenación: {}
• {a, b}
• Combina los bits de a y b en un único vector.
• Por ejemplo, si a es de 4 bits y b es de 4 bits, {a, b} será de 8 bits.
• c = {c[4:0] , c[7:5]} rota el vector c[7:0] tres posiciones a la izquierda.

• Replicación: {n{}}
• {4{a}}
• Repite el valor de a n veces.
• Por ejemplo, si a = 2'b01, entonces {4{a}} = 8'b01010101

• Operador condicional ternario:

– Evalúa una condición y asigna un valor diferente según si 
dicha condición se cumple o no.
• result = <condition> ?<true value> :<false value>;

Operadores

{a, b} = 8’b10011100
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• Operadores de Asignación en Procedimientos

• Asignación bloqueante: =
• Se ejecuta de forma secuencial dentro de un bloque initial o always.

• Asignación no bloqueante: <=
• Permite que las asignaciones se programen en paralelo dentro de 

un bloque secuencial.
• Muy utilizado en el modelado de registros y secuencias de diseño 

sin introducir dependencias de orden.

Operadores

module bloqueante( 
input wire a, clk,  
output reg zb
);  

reg q;    
always @(posedge clk) begin

q = a;
zb = q; 

end
endmodule

module nobloqueante( 
input wire a, clk,  
output reg znb
);  

reg q;    
always @(posedge clk) begin

q <= a;
znb <= q; 

end
endmodule

Cuando llega 
el flanco activo 
de reloj, zb
toma el valor 
de a

Cuando llega el flanco 
activo de reloj, znb
toma el valor de q y, 
en el siguiente flanco, 
es cuando toma el 
valor de a
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Operadores

module bloqueante( 
input wire a, clk,  
output reg zb
);  

reg q;    
always @(posedge clk) begin

q = a;
zb = q; 

end
endmodule

module nobloqueante( 
input wire a, clk,  
output wire znb
);  

reg q;    
always @(posedge clk) begin

q <= a;
znb <= q; 

end
endmodule

Cuando llega 
el flanco activo 
de reloj, zb
toma el valor 
de a

Cuando llega el flanco 
activo de reloj, znb
toma el valor de q y, 
en el siguiente flanco, 
es cuando toma el 
valor de a

clk

a

q

zb

znb
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• Resumen

• Aritméticos: +, -, *, /, %, 
Comparación: ==, !=, >, <, >=, <=

• Lógicos: &&, ||, !

• Bit a bit: &, |, ^, ^~, ~^, ~ (incluyendo reducción).

• Desplazamiento: <<, >>, >>>

• Concatenación y replicación: {}, {n{}}

• Condicional ternario: ? : 

• Asignación: bloqueante (=) y no bloqueante (<=)

Operadores
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• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos: 

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad
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– parameter: constante válida en un módulo que 
permite crear bloques genéricos personalizables, su 
valor puede modificarse al instanciar el módulo

– localparam: constante cuyo valor es fijo y no se puede 
modificar
• Permiten definir el ancho de un bus, el tamaño de un 

contador, los elementos de un vector, … 

• Se les asigna determinados valores que pueden ser 
modificados al instanciar el módulo, sin modificar su código. 

• Su uso facilita la reutilización y adaptación del módulo a 
distintos contextos

• Se recomienda nombrarlos con mayúsculas para facilitar la 
legibilidad

Constantes en Verilog
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• Ejemplo (I):

Módulos parametrizables

module mux #(parameter WIDTH = 8) (
input wire [WIDTH-1:0 ] a,b,
input wire sel, 
output reg [WIDTH-1:0] op
);

always @*
if (sel) 

op=a; 
else

op=b;
endmodule

wire [7:0] a8, b8;
reg [7:0] op8;
wire [3:0] a4, b4;
reg [3:0] op4;
wire sel;

//instanciación por defecto: WIDTH se mantiene a 8
mux mux8 (.a(a8),.b(b8),.sel,.op(op8));

// Instanciación con un ancho diferente
mux #(.WIDTH(4)) mux4 (.a(a4),.b(b4),.sel,.op(op4));

Definimos variables 
de 8 y 4 bits para 
comparar las 
instanciaciones
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• Módulos parametrizables, ejemplo (II):

Módulos parametrizables

module contador #(parameter WIDTH = 8) ( 
input wire clk,
input wire rst, 
output reg [WIDTH-1:0] count
);

// Lógica del contador 
always @(posedge clk)

if (rst) 
count <= 'd0; 

else
count <= count + 1;

endmodule

// Instanciación con un tamaño diferente

contador #(.WIDTH(16)) contador16bits (
.clk(clk),
.rst(rst),
.count(count16)

);
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• Sintaxis:

– Declaración:
module nombre_modulo #(parameter parametro1 = valor1, 

parametro2 = valor2, ...) (...);

– Redefinición al instanciar el módulo:
nombre_modulo #(.parametro1(valor1),

.parametro2(valor2), ...) 

nombre_instancia (...);

– Se puede usar conexión posicional.
nombre_modulo #(valor1,valor2, ...)

nombre_instancia (...);

Módulos parametrizables 
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• localparam define una constante invariable

– A diferencia de parameter su valor no puede ser 
redefinido al instanciarse

– Sin embargo, puede estar definido a partir de los 
valores de otras constantes tipo parameter

Constantes en Verilog

module multiplicador
          #(parameter WIDTH_A = 4, WIDTH_B = 4)

(input wire [WIDTH_A-1:0] a,
input wire [WIDTH_B-1:0] b,
output reg [WIDTH_OP-1:0] result);

   localparam WIDTH_OP = WIDTH_A + WIDTH_B;
assign result = a * b;

endmodule

result

a b

nm

m+n

multiplicador
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• El registro universal puede realizar todas  las operaciones:

– desplazamiento a derecha e izquierda, 

– carga en paralelo (operación de escritura) 

– inhibición (guardar el dato)

– puesta a 0

Ejemplo: registro universal

op[1:0]

serial_in_left data_in[7:0]

data_out[7:0]

rst

serial_in_right

clk

reg_univ[8]

op[1:0] operacion

0 0
0 1
1 0
1 1

inhibición
shift left

shift right
escritura
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Ejemplo: registro universal

module reg_univ #( parameter WIDTH = 8)(

input wire clk, rst,

input wire [1:0] op,

input wire serial_in_left, 

input wire serial_in_right,

input wire [WIDTH-1:0] data_in, 

output reg [WIDTH-1:0] data_out
); 

always @(posedge clk, posedge rst) begin

if (rst) 
data_out <= ‘0; 

else
case (op) 

2'b00: data_out <= data_out;

2'b01: data_out <= {data_out[WIDTH-2:0], serial_in_right}; 

2'b10: data_out <= {serial_in_left, data_out [WIDTH-1:1]}; 

2'b11: data_out <= data_in; 

default: data_out <= ‘0; 
endcase

end

endmodule

op[1:0]

serial_in_left data_in[7:0]

data_out[7:0]

rst

serial_in_right

clk

reg_univ[8]

begin

data_out <= data_out<<1;
data_out[0] <= serial_in right

end
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• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos: 

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad
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Descripción de máquinas de estado

A

B

C

1/0

0/0

0/0

1/0

1/1

0/0

El estado inicial que 
conviene definir en 
este caso es el 
estado A 

• Se utilizará una estructura general del código en la que hay 2 tipos 
de procesos

– Un proceso always para establecer las condiciones de cambio de 
estado

– Uno o varios procesos always para calcular el próximo estado y las 
salidas. También pueden usarse sentencias assign.

• Se incorpora reset asíncrono (puede ser síncrono) para llevar a la 
máquina a un estado inicial conocido.



Estructura de Computadores – Pilar Parra 64

Descripción de máquinas de estado

module detector_3_unos (

input wire clk,

input wire rst,      

input wire in,       

output wire z );

parameter A=2’b00, B=2’b01, C=2’b10;

reg [1:0] state, next_state;

always @(posedge clk or posedge rst) begin

if (rst)

state <= A;

else

state <= next_state;

end

se declaran 
entradas y
salidas

se asignan códigos a los estados
y se declaran las variables de 
estado

procedimiento de cambio de estado:

- valor 1 en rst lleva a la máquina al estado inicial

- un flanco positivo en clk lleva a cambio de 
estado
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Descripción de máquinas de estado

always begin

        case (state)

            A: next_state = in ? B : A;

            B: next_state = in ? C : A;

            C: next_state = in ? C : A;

            default: next_state = A;

        endcase

    end  

assign z = (state ==C && in);  

endmodule

procedimiento 
combinacional de cálculo 
del próximo estado

case (state)

            A: if (in)

 next_state =  B;

                 else

                     next_state = A;

            B:  if (in)

 next_state =  C;

                 else

                     next_state = A;

            C: if (in)

 next_state =  C;

                 else

                     next_state = A;

            default: next_state =  C;

endcase

podría realizarse con 
if/else en lugar de la 
sentencia condicional

cálculo de la salida 
podría realizarse con 
otro always en lugar 
del assign

always
if (in==1 && state == C)        

z=1;
else

z=0;

A
B

C

1/0
0/0

0/0

1/0

1/1

0/0
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Descripción de máquinas de estado

module detector_3_unos (

input wire clk,

input wire rst,      

input wire in,       

output wire z );

parameter A=2’b00, B=2’b01, C=2’b10;

reg [1:0] state, next_state;

always @(posedge clk or posedge rst) begin

if (rst)

state <= A;

else

state <= next_state;

end

El bloque de 
declaración del 
módulo no cambia 

El procedimiento de cambio de estado, tampoco 
cambia:

- valor 1 en rst lleva a la máquina al estado inicial

- un flanco positivo en clk lleva a cambio de 
estado

La misma especificación puede realizarse 
mediante una máquina de Moore

En este caso la salida está asociada al 
estado presente ya que no depende del 
valor de la entrada de forma directa
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Descripción de máquinas de estado

always begin

        case (state)

            A: next_state = in ? B : A;

            B: next_state = in ? C : A;

            C: next_state = in ? D : A;

            D: next_state = in ? D : A;

            default: next_state = A;

        endcase

    end  

    assign z = (state ==D);  

endmodule

always
if (state == D)        

z=1;
else

z=0;

El cálculo de la salida 
podría realizarse con 
otro always en lugar 
del assign

1

0

0

1

1

0
A,0

B,0

C,0

D,1

1

0
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• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos: 

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad
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• Se puede usar la directiva `define para definir constantes y 
macros que se reemplazan antes de la compilación del código.

• Permite cambiar fácilmente los valores de los símbolos sin 
tener que editar el código.

• Sintaxis: `define SIMBOLO valor

– Ejemplo:

La directiva `define

`define CLOCK_PERIOD 10  // Define una constante: el período de reloj
module testbench;

reg clk;
. . . 

initial begin
clk = 0;
forever #(`CLOCK_PERIOD / 2) clk = ~clk;  // Generación del reloj

end
. . . 

endmodule
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• Se puede usar la directiva `include para incluir archivos fuente 
externos en un código. 

– Se usa principalmente en testbenches para organizar mejor el código y 
reutilizar definiciones evitando el tener que repetirlas en múltiples 
archivos.

• Sintaxis: `include “archivo.sv”

– Ejemplo:

La directiva `include

// constantes.sv
`define WIDTH 8
`define NUM_ENTRADAS 16

module test;
`include "constantes.sv"  // Incluir archivo de constantes

reg [`WIDTH-1:0] data[`NUM_ENTRADAS-1:0];

initial begin
$display("Ancho de datos: %0d", `WIDTH);
$display("Número de entradas: %0d", `NUM_ENTRADAS);

end
endmodule
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• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos: 

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad
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• Pasos para la simulación:

– se debe disponer de la descripción del módulo a simular 
en Verilog

– hay que crear un módulo especial llamado testbench que:
• incluirá una instancia del circuito a probar (dut: design under

test) 

• generará los estímulos necesarios para probar su 
funcionamiento

– el testbench puede incluir bloques procedimentales: initial, 
always, …

– para observar las formas de onda durante la simulación, 
se usan comandos específicos:
• $dumpfile, $dumpvars, $dumpon, $dumpoff…

Simulación funcional en Verilog
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• Nota: algunos entornos de diseño como ISE o Vivado no requieren 
estos comandos pues usan su propio formato de volcado y permiten 
añadir las ondas manualmente al simular

• Comando $dumpfile:

– Sintaxis: $dumpfile("nombre.vcd")

– Este comando indica el nombre del archivo donde se 
guardará la información de la simulación, generalmente en 
formato VCD (Value Change Dump).  Este contendrá todos 
los cambios de las señales que se especifiquen.

• Comandos $dumpon y $dumpoff: 
– Permiten iniciar y detener el registro de datos durante la 

simulación para generar un archivo vcd más pequeño

Simulación
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• Comando $dumpvars:
– Sintaxis: $dumpvars(n, modulo)

– Con este comando se seleccionan las variables y señales que se 
van a volcar en el archivo definido con $dumpfile. 

– Con $dumpvars(0, top) se vuelcan todas las variables de todas 
las instancias y módulos que forman parte de la simulación, es 
decir, se realiza un volcado global 

– También se puede limitar el volcado especificando un módulo 
concreto y el número de niveles (n) de jerarquía al que se quiere 
descender: $dumpvars(n, instancia)

– $dumpvars; es equivalente a $dumpvars(0, top) en Verilog

Simulación
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module tb_codificador_de_prioridad;

reg [3:0] entrada;
wire [1:0] salida;

wire e;

codificador_de_prioridad dut (

.entrada(entrada),

.salida(salida),

.e(e)

);

initial begin

$dumpfile("codificador_de_prioridad.vcd");
$dumpvars(0, tb_codificador_de_prioridad);

end

initial begin
entrada = 4'b0000;  

#10;
entrada = 4'b0001;  
#10; 

entrada = 4'b0010;  
#10;

Organización de un testbench

entrada = 4'b0011;  

#10;
entrada = 4'b0100;  
#10;

entrada = 4'b1000;  
#10;
entrada = 4'b1010;  

#10;
entrada = 4'b0111;  
#10;

$finish;
end

endmodule

El testbench es 

un módulo sin 
entradas ni 
salidas

Se declaran 

señales de 
prueba para 
conectarlas al 

módulo a probar

Se instancia el 

módulo y se 
conectan a él las 
señales de prueba

En este bloque 

initial se 
incorporan los 
comandos para que 

se generen formas 
de onda.

En este bloque initial

se fijan los valores de 
las entradas y se 
establece el final de la 

simulación.
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• El simulador nos muestra entradas y salidas para los casos probados: 
0000,0001,0010,0011,0100,1000,1010,0111

• Cada valor se mantiene durante 10ns (ver más adelante unidades)

• La salida nos muestra en cada caso el código de la entrada más prioritaria que valga 1.

• El bus de entrada ha sido desplegado para apreciar mejor las entradas

• El bus de salida se muestra en base 10

Resultado de la simulación
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module tb_codificador_de_prioridad;

reg [3:0] entrada;
wire [1:0] salida;

wire e;

codificador_de_prioridad dut (

.entrada(entrada),

.salida(salida),

.e(e)

);
initial begin

$dumpfile("codificador_de_prioridad.vcd");

$dumpvars(0, tb_codificador_de_prioridad);
end

initial begin
entrada = 4’b0000;
#160;

$finish;
end

always begin
#10;

entrada = entrada + 1’b1;

end
endmodule

Organización de un testbench

En este bloque 

initial solo se 
proporciona el 
valor inicial de las 

entradas y se 
establece el final 
de la simulación

En este bloque always

se cubren todas las 
posibilidades de 
entrada.

Otra opción para 

la organización 
del testbench
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Resultado de la simulación

• El simulador nos muestra entradas y salidas para todos los casos posibles de entrada (son 16):
0000,0001,0010, …, 1101,1110,1111

• Cada valor se mantiene durante 10ns (ver más adelante unidades) 

• La salida nos muestra en cada caso el código de la entrada más prioritaria que valga 1.

• El bus de entrada ha sido desplegado para apreciar mejor las entradas

• El bus de salida se muestra en base 10
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• El tiempo se puede expresar con el símbolo # seguido de un 
valor numérico entero o en punto fijo seguido (sin espacio) por 
una unidad de tiempo (fs ps ns us ms s) 

– Ejemplo: #10ns

• Existe una directiva `timescale que fija las unidades de tiempo 
y la precisión en la simulación

– Sintaxis: ‘timescale unidad/precisión

• Ejemplo: ‘timescale 1ns/100ps (usar 1, 10, 100)

• Si al expresar el tiempo no se incluyen unidades se entiende 
que se usa la indicada en la directiva `timescale

– El simulador redondea las cantidades a la precisión establecida.

Unidades de tiempo
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• Se puede imprimir información durante la simulación 
mediante las funciones $display y $monitor. Ambas escriben 
con formato.

• $display imprime el mensaje una sola vez: en el punto donde 
se incluye.

– Ejemplo:
• $display ("Valor de la señal A = %0d", A);

• $monitor se escribe una sola vez, pero imprime el mensaje 
cada vez que cambia alguna de las variables incluidas en su 
lista.

– Ejemplo:
• $monitor ("Tiempo: %0d , A = %0d , B = %0d", $time, A, B);

Salida por pantalla
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Salida por pantalla: $display, ejemplo

`timescale 1ns/1ns
module tb_codificador_de_prioridad;

. . .

. . .
initial begin

entrada = 4'b0000; 
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e); 
#10;
entrada = 4'b0001;  
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
#10; 
entrada = 4'b0010;  

$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
#10; 
entrada = 4'b0011; 
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e); 
#10;
entrada = 4'b0100;  
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e); 
#10;
entrada = 4'b1000;  
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e); 
#10;   
entrada = 4’b1010;  
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e); 
entrada = 4’b0111;  
#10;
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e); 

. . .

. . .

Tiempo 10: entrada = 0000, salida = 00, e = 1
Tiempo 20: entrada = 0001, salida = 00, e = 0
Tiempo 30: entrada = 0010, salida = 01, e = 0
Tiempo 40: entrada = 0011, salida = 01, e = 0
Tiempo 50: entrada = 0100, salida = 10, e = 0
Tiempo 60: entrada = 1000, salida = 11, e = 0
Tiempo 70: entrada = 1010, salida = 11, e = 0
Tiempo 80: entrada = 0111, salida = 10, e = 0
testbench.sv:66: $finish called at 80 (1ns)

La salida por pantalla 

muestra los resultados 
con el formato solicitado 
en el testbench

Incluimos la directiva ̀ timescale para fijar 

las unidades de tiempo y la precisión
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Salida por pantalla: $monitor, ejemplo

`timescale 1ns/1ns
module tb_codificador_de_prioridad;

. . .

. . .
initial begin

$monitor ("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
entrada = 4'b0000; 
#10;
entrada = 4'b0001;  
#10; 
entrada = 4'b0010;  
#10; 
entrada = 4'b0011; 
#10;
entrada = 4'b0100;  
#10;
entrada = 4'b1000;  
#10;   
entrada = 4’b1010;  
#10;   
entrada = 4’b0111;  

. . .

. . .

Con una única línea 

conseguimos el mismo 
efecto

Tiempo 10: entrada = 0000, salida = 00, e = 1
Tiempo 20: entrada = 0001, salida = 00, e = 0
Tiempo 30: entrada = 0010, salida = 01, e = 0
Tiempo 40: entrada = 0011, salida = 01, e = 0
Tiempo 50: entrada = 0100, salida = 10, e = 0
Tiempo 60: entrada = 1000, salida = 11, e = 0
Tiempo 70: entrada = 1010, salida = 11, e = 0
Tiempo 80: entrada = 0111, salida = 10, e = 0
testbench.sv:26: $finish called at 80 (1ns)
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• Contador módulo 256 y 
testbench:

module simple_counter (

input wire clk, rst, 

output reg [7:0] count ); 

always @(posedge clk or posedge rst)

begin

if (rst) 

count <= 8'd0; 

else

count <= count + 1;

end

endmodule

module test_repeat_loop; 
reg clk,rst; 
wire [7:0] count;

simple_counter uut (
.clk (clk), 
.rst (rst),
.count (count )); 

always begin
#5 clk = ~clk; 
end

initial begin
clk=0;
rst = 1; 
#12;  
rst = 0; 
repeat (20)  @(posedge clk); 
$finish;

end
endmodule

Simulación (ejemplo I)

La organización es la ya vista:

- creación de un módulo,
- declaración de señales,
- instanciación y conexión 

del módulo a probar

generación de la señal de reloj

generación de estímulos

con esta línea esperamos 

20 ciclos de reloj
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• El simulador muestra las entradas: clk y rst y la salida de 8 bits del contador count

• El reloj es de periodo 10 tal y como se ha definido.

• En la salida se puede apreciar el reset inicial, y durante 20 ciclos de reloj la 
evolución del estado del contador en decimal: 0->19

Resultado de la simulación
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• Contador módulo 8 con 
acarreo:

module mod8_counter (

input wire clk, rst, 

output reg [2:0] count,

output reg cy); 

always@(posedge clk or posedge rst)

begin

if (rst) 

count <= 3'd0; 

else

count <= count + 1;

end

assign cy = (count == 3'b111);

endmodule

module test_counter; 

reg clk,rst; 

wire [2:0] count;

wire cy;

mod8_counter uut (

.clk (clk), 

.rst (rst),

.count (count),

.cy(cy)); 

always begin

#5 clk = ~clk; 

end

Simulación (ejemplo II)

initial begin

clk=0;

rst = 1; 

#15;  

rst = 0; 

repeat (10) @(negedge clk); 

rst=1;

@(negedge clk); 

rst=0;

repeat(5) @(posedge clk)

$finish;

end

endmodule

Podemos usar referencias 

a ambos flancos de reloj
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Resultado de la simulación

• El simulador muestra las entradas clk y rst y las salidas: los 3 bits del 
contador (count) y la salida de carry (cy)

• En la salida se aprecian:

– el reset inicial y el ciclo completo de cuenta
– la activación de la salida de carry en el estado 7 (último estado de cuenta)
– otro reset que lleva al contador de nuevo al valor inicial (0)

• Es importante destacar que el reset se produce de forma asíncrona, sin 
necesidad de esperar a la señal  de reloj, haciendo que el estado 2 no 
dure un ciclo de reloj. 

– Esto es debido a que dicha señal se ha incluido en la lista de sensibilidad del 
always al definir el módulo.
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Resultado de la simulación

• Si se desea que la señal de reset sea síncrona basta con excluirla de la 
lista de sensibilidad.

• La respuesta en este caso es:

Con always @(posedge clk or posedge rst)

rst es asíncrona

Con always @(posedge clk)

rst es síncrona



Estructura de Computadores – Pilar Parra 88

• El registro universal puede realizar todas las operaciones:

– desplazamiento a derecha e izquierda, 

– carga en paralelo (operación de escritura) 

– inhibición (guardar el dato)

– puesta a 0

Simulación(ejemplo III): registro universal

op[1:0]

serial_in_left data_in[7:0]

data_out[7:0]

rst

serial_in_right

clk

reg_univ[8]

op[1:0] operacion

0 0
0 1
1 0
1 1

inhibición
shift left

shift right
escritura

Recordamos 
el módulo
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Simulación(ejemplo III)

module reg_univ #( parameter WIDTH = 8)(

input wire clk, rst,

input wire [1:0] op,

input wire serial_in_left, 

input wire serial_in_right,

input wire [WIDTH-1:0] data_in, 

output reg [WIDTH-1:0] data_out
); 

always @(posedge clk, posedge rst) begin

if (rst) 
data_out <= ‘0; 

else
case (op) 

2'b00: data_out <= data_out;

2'b01: data_out <= {data_out[WIDTH-2:0], serial_in_right}; 

2'b10: data_out <= {serial_in_left, data_out [WIDTH-1:1]}; 

2'b11: data_out <= data_in; 

default: data_out <= ‘0; 
endcase

end

endmodule

op[1:0]

serial_in_left data_in[7:0]

data_out[7:0]

rst

serial_in_right

clk

reg_univ[8]

begin

data_out <= data_out<<1;
data_out[0] <= serial_in right

end

Recordamos 
el módulo
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Simulación(ejemplo III)

module tb_reg_univ;

parameter WIDTH = 8;

reg clk;

reg rst;
reg [1:0] op;
reg serial_in_left;

reg serial_in_right;
reg [WIDTH-1:0] data_in;
wire [WIDTH-1:0] data_out;

reg_univ #(.WIDTH(WIDTH)) dut (
.clk(clk),

.rst(rst),

.op(op),

.serial_in_left(serial_in_left),

.serial_in_right(serial_in_right),

.data_in(data_in),

.data_out(data_out)

);

initial begin

clk = 0;
forever #5 clk = ~clk;

end

op[1:0]

serial_in_left data_in[7:0]

data_out[7:0]

rst

serial_in_right

clk

reg_univ[8]

initial begin

$dumpfile (”dump.vcd");
$dumpvars (0, tb_reg_univ); 

end

initial begin
rst = 1;

op = 2'b00;           
data_in = '0;
serial_in_left = 0;

serial_in_right = 0;

#10;

rst = 0; //desactiva reset

@(posedge clk);

op = 2'b11;         // carga en paralelo
data_in = 8'hA5;   // Valor de prueba
@(posedge clk);

@(posedge clk);
op = 2'b00;    // inhibición

data_in = 8'hFF; // data_in no afecta
@(posedge clk);

@(posedge clk);

op = 2'b01;           // Shift left
serial_in_right = 1;   // Bit que entra
@(posedge clk);

@(posedge clk);

op = 2'b10;           // Shift right
serial_in_left = 1;    // Bit que entra
@(posedge clk);

// Finalización de la simulación
#20;

$finish;
end

endmodule
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Test del registro universal: resultado

Reset inicial Carga Inhibición Left Right

op[1:0] operacion

0 0

0 1
1 0
1 1

inhibición

shift left
shift right
escritura


	Slide 1: Tema 1  Introducción a Verilog 
	Slide 2: Objetivos
	Slide 3: Esquema de la unidad
	Slide 4: Aspectos básicos de Verilog
	Slide 5: Aspectos básicos de Verilog
	Slide 6: Aspectos básicos de Verilog
	Slide 7: Aspectos básicos de Verilog
	Slide 8: Aspectos básicos de Verilog
	Slide 9: Aspectos básicos de Verilog
	Slide 10: Aspectos básicos de Verilog
	Slide 11: Aspectos básicos de Verilog
	Slide 12: Aspectos básicos de Verilog
	Slide 13: Aspectos básicos de Verilog
	Slide 14: Aspectos básicos de Verilog
	Slide 15: Aspectos básicos de Verilog
	Slide 16: Aspectos básicos de Verilog
	Slide 17: Aspectos básicos de Verilog
	Slide 18: Esquema de la unidad
	Slide 19: Tipos de datos en Verilog
	Slide 20: Constantes en Verilog
	Slide 21: Tipos de datos en Verilog
	Slide 22: Esquema de la unidad
	Slide 23: Vectores y arrays
	Slide 24: Vectores y arrays
	Slide 25: Vectores y arrays
	Slide 26: Esquema de la unidad
	Slide 27: Literales y bases
	Slide 28: Esquema de la unidad
	Slide 29: Procedimientos: sentencias condicionales
	Slide 30: Procedimientos: sentencias condicionales
	Slide 31: Procedimientos: sentencias condicionales
	Slide 32: Procedimientos: sentencias condicionales
	Slide 33: Procedimientos: sentencias condicionales
	Slide 34: Procedimientos: sentencias condicionales
	Slide 35: Procedimientos: sentencias condicionales
	Slide 36: Procedimientos: bucles
	Slide 37: Procedimientos: bucles
	Slide 38: Procedimientos: bucles
	Slide 39: Procedimientos: bucles
	Slide 40: Procedimientos: bucles
	Slide 41: Procedimientos: bucles
	Slide 42: Esquema de la unidad
	Slide 43: Operadores
	Slide 44: Operadores
	Slide 45: Operadores
	Slide 46: Operadores
	Slide 47: Operadores
	Slide 48: Operadores
	Slide 49: Operadores
	Slide 50: Operadores
	Slide 51: Operadores
	Slide 52: Operadores
	Slide 53: Operadores
	Slide 54: Esquema de la unidad
	Slide 55: Constantes en Verilog
	Slide 56: Módulos parametrizables
	Slide 57: Módulos parametrizables
	Slide 58: Módulos parametrizables 
	Slide 59: Constantes en Verilog
	Slide 60: Ejemplo: registro universal
	Slide 61: Ejemplo: registro universal
	Slide 62: Esquema de la unidad
	Slide 63: Descripción de máquinas de estado
	Slide 64: Descripción de máquinas de estado
	Slide 65: Descripción de máquinas de estado
	Slide 66: Descripción de máquinas de estado
	Slide 67: Descripción de máquinas de estado
	Slide 68: Esquema de la unidad
	Slide 69: La directiva `define
	Slide 70: La directiva `include
	Slide 71: Esquema de la unidad
	Slide 72: Simulación funcional en Verilog
	Slide 73: Simulación
	Slide 74: Simulación
	Slide 75: Organización de un testbench
	Slide 76: Resultado de la simulación
	Slide 77: Organización de un testbench
	Slide 78: Resultado de la simulación
	Slide 79: Unidades de tiempo
	Slide 80: Salida por pantalla
	Slide 81: Salida por pantalla: $display, ejemplo
	Slide 82: Salida por pantalla: $monitor, ejemplo
	Slide 83: Simulación (ejemplo I)
	Slide 84: Resultado de la simulación
	Slide 85: Simulación (ejemplo II)
	Slide 86: Resultado de la simulación
	Slide 87: Resultado de la simulación
	Slide 88: Simulación(ejemplo III): registro universal
	Slide 89: Simulación(ejemplo III)
	Slide 90: Simulación(ejemplo III)
	Slide 91: Test del registro universal: resultado

