
Tema 1

Introducción a Verilog

Estructura de Computadores – Pilar Parra 2

• Presentar las características básicas del lenguaje de
descripción de hardware Verilog

• Introducir las palabras claves del lenguaje y sus reglas

• Introducir el diseño jerárquico

• Presentar los tipos de datos, operadores y estructuras del
lenguaje

• Mostrar la descripción de módulos básicos
combinacionales y secuenciales

• Mostrar la descripción de estímulos para simulación
(testbench)

Objetivos

Estructura de Computadores – Pilar Parra 3

• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos:

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad

Estructura de Computadores – Pilar Parra 4

• Descripción de módulos de
diseño

– Comienza con la palabra clave
module

– Se declaran la lista de entradas y
salidas del módulo

– Se pueden agrupar entradas (o
salidas) si son del mismo tamaño

– En el cuerpo del módulo se
describe el comportamiento del
mismo

– Se termina con la palabra clave
endmodule

module halfadd (
input wire a,b,
output wire sum, carry);

assign sum = a^b;
assign carry= a&b;

endmodule

Aspectos básicos de Verilog

halfadd
a

b

sum

carry

Estructura de Computadores – Pilar Parra 5

• Descripción de módulos de
diseño

– assign se utiliza para definir
una expresión lógica

– ^ es la op. exclusive-OR

– & es la op. and

– Las palabras clave son siempre
en minúsculas

– Verilog es “case-sensitive”:
diferencia mayúsculas y
minúsculas

module halfadd (
input wire a,b,
output wire sum,carry);

assign sum = a^b;
assign carry= a&b;

endmodule

Aspectos básicos de Verilog

halfadd
a

b

sum

carry

Estructura de Computadores – Pilar Parra 6

• Reglas para los comentarios y el formato:

– Se pueden escribir comentarios de línea y de bloque
• Los comentarios de línea comienzan a partir de dos barras

consecutivas (//) y terminan al final de la línea.

• Puede ser una línea completa o solo la parte final

• Los comentarios de bloque comienzan con (/*) y terminan
con (*/)

– Verilog es un lenguaje sin formato
• Se puede organizar el código como se quiera

• Se recomienda usar espacios, tabulaciones y fin de línea, de
modo que el código sea legible

• En general, no se debería poner más de una sentencia
ejecutable por línea.

Aspectos básicos de Verilog

Estructura de Computadores – Pilar Parra 7

• Diseño jerárquico:

– Podemos construir nuevos módulos a partir de otros

Aspectos básicos de Verilog

a

b
cin

sum

carry
fulladd

a

b

sum

carry

halfadd

a

b

sum

carry

halfadd
a

b

cin

U1 U2

sum

carry

w1

w2

w3

Estructura de Computadores – Pilar Parra 8

• Diseño jerárquico:
– Es necesario:

• Declarar las variables locales

• Instanciar los módulos

– Dar a cada instancia un nombre

– Conectar los puertos de entrada
y salida de cada instancia

Aspectos básicos de Verilog

a

b

sum

carry

halfadd
a

b

sum

carry

halfadd
a

b

cin

U1 U2

sum

carry

module fulladd (input wire a, b, cin,
output wire sum, carry);

wire w1,w2,w3;

halfadd U1(.a(a), .b(b), .sum(w1), .carry(w2));
halfadd U2(.a(w1), .b(cin), .sum(sum), .carry(w3));

assign carry = w2 | w3;

endmodule

w1

w2

w3

Estructura de Computadores – Pilar Parra 9

• Conexión posicional vs conexión nombrada

– Se pueden conectar puertos y variables respetando el orden de
la declaración de los puertos en el módulo (conexión posicional)

– No es recomendable, es fácil cometer errores
– Es preferible usar la conexión nombrada (la vista anteriormente)

Aspectos básicos de Verilog

module halfadd (
input wire a,b,
output wire sum,carry);

assign sum a^b;
assign carry= a&b;

endmodule

module fulladd (input wire a, b, cin,
output wire sum, carry);

wire w1,w2,w3;

halfadd U1(a,b,w1,w2);
halfadd U2(w1,cin,sum,w3);

assign carry = w2 | w3;

endmodule

Estructura de Computadores – Pilar Parra 10

• Tipos de descripción:

– Descripción funcional

– Descripción estructural

– Descripción procedimental

Aspectos básicos de Verilog

Estructura de Computadores – Pilar Parra 11

• Tipos de descripción:

– Descripción funcional:
• Se realizan asignaciones de forma continua utilizando assign

• Representa conexiones directas de hardware que están
constantemente activas y responden inmediatamente a
cambios en sus entradas

• Modela lógica combinacional

• Todas las sentencias assign se ejecutan concurrentemente

Aspectos básicos de Verilog

module halfadd (

input wire a,b,

output wire sum,carry

);

assign sum = a^b;

assign carry= a&b;

endmodule

Estructura de Computadores – Pilar Parra 12

• Tipos de descripción:

– Descripción estructural:
• Se conectan módulos que ya están definidos previamente

mediante instanciación

• Las puertas lógicas básicas ya están predefinidas (and, nand,
or,nor, xor, xnor, not, buf, etc.)

• Es muy útil para la interconexión de módulos creados previamente
(diseño jerárquico)

Aspectos básicos de Verilog

module fulladd (input wire a, b, cin,
output wire sum, carry);

wire w1,w2,w3;

halfadd U1(a,b,w1,w2);
halfadd U2(w1,cin,sum,w3);

assign carry = w2 | w3;
endmodule

Estructura de Computadores – Pilar Parra 13

• Tipos de descripción:

– Descripción procedimental:

• Permite el uso de estructuras de control similares a las
de los lenguajes de programación

• Se estructura en bloques procedimentales o procesos

• Todos los bloques procedimentales se ejecutan
concurrentemente

• Dentro de cada proceso las instrucciones se ejecutan
en el orden en que están escritas (flujo secuencial)

Aspectos básicos de Verilog

Estructura de Computadores – Pilar Parra 14

• Bloques procedimentales
– Pueden definir comportamientos complejos, como lógica

combinacional repetitiva o condicional
– Pueden definir circuitos con memoria (secuenciales)
– Pueden definir bancos de estímulos (testbenches) para

simulaciones
– Fundamentalmente hay dos tipos de bloques procedimentales:

• tipo always: Se ejecutan continuamente (cíclicamente)
• tipo initial: Se ejecutan linealmente (de principio a fin una sola vez)

Aspectos básicos de Verilog

always @(a, b, sel)
if(sel== 1)

op = b;
else

op = a;

initial
begin

a = 1;
b = 0;
sel = 1;
#10ns;
sel= 0;
...

end

Estructura de Computadores – Pilar Parra 15

• Bloques procedimentales

– Cuando hay más de una sentencia en un bloque,
estas han de agruparse mediante begin y end

Aspectos básicos de Verilog

always @(a, b, sel)
if(sel== 1)

op = b;
else

op = a;

initial
begin

a = 1;
b = 0;
sel = 1;
#10ns;
sel= 0;
...

end

Estructura de Computadores – Pilar Parra 16

• Ejemplo de concurrencia
– Un módulo puede contener múltiples bloques procedimentales (initial,

always) y múltiples sentencias assign y no hay orden de ejecución
entre ellos sino que se ejecutan en paralelo (concurrencia)

– Dentro de un procedimiento las sentencias se ejecutan
secuencialmente en orden de aparición

Aspectos básicos de Verilog

module ejemplo1 (

input wire x,
input wire y,
input wire z,

output wire f1);

assign f1 = x & y & z;

endmodule

module ejemplo2 (

input wire x,
input wire y,
input wire z,

output wire f1);

wire f0;

assign f0 = x & y;
assign f1 = f0 & z;

endmodule

always begin // a periodica T=10

#5 a = ~a;
end

always begin
#10 b = ~b; // b periodica T=20
end

initial begin
a=0;

b=0;
#500;

$finish;

end

definen la misma

función

Estructura de Computadores – Pilar Parra 17

• Bloques procedimentales
– Cada bloque always se ejecuta (dispara) cuando hay un evento en

alguna variable de su lista de sensibilidad que viene determinada
por una @

– En lógica combinacional la lista de sensibilidad debe incluir todas
las variables

– Para la lógica secuencial el evento suele ser el flanco de una señal,
es decir, se disparan en una transición específica de una
determinada señal.

– Se utilizan las palabras clave posedge y negedge

Aspectos básicos de Verilog

always @(a, b, sel)
if(sel== 1)

op = b;
else

op = a;

always @(posedge clock)
q<=d;

Lista de
sensibilidad

Estructura de Computadores – Pilar Parra 18

• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos:

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad

Estructura de Computadores – Pilar Parra 19

– Nets, para representar conexiones. No almacenan valores.
• Se usan sobre todo para conexiones entre módulos: wire (el más

común y el tipo por defecto).
• Se usan en asignaciones continuas (assign), nunca en bloque

procedimentales.

– Variables, para almacenar valores.
• El más importante: reg. Otros: integer (entero con signo de 32

bits), real, time…
• Se usan en bloques procedimentales (always, initial)

– Tipos compuestos:
• vectores: cualquier wire o reg puede ser vectorial,

– reg [15:0] data;
– wire [3:0] opcode;

• arrays: para memorias o bancos de registros,
– reg [7:0] memoria[0:255];

Tipos de datos en Verilog

Estructura de Computadores – Pilar Parra 20

– parameter: constante válida en un módulo que
permite crear bloques genéricos personalizables,
su valor puede modificarse al instanciar el módulo

– localparam: constante cuyo valor es fijo y no se
puede modificar

Constantes en Verilog

Estructura de Computadores – Pilar Parra 21

• Tipos por defecto y declaraciones implícitas

– Una declaración sin tipo es wire por defecto
– Una errata en un nombre de variable puede llevar a una declaración implícita

como wire
– Lo recomendable es declarar completamente todas las variables
– También se puede usar la directiva `default_nettype none de esta forma se

genera un error si se intenta usar una variable no declarada

Tipos de datos en Verilog

module halfadd (

input wire a, b,

output sum, carry);

assign sum = a^b;

assign carry = a&b;

endmodule

module fulladd (input wire a, b, cin,
output wire sum, carry);

wire w1,w2,w3;

halfadd U1(.a(a), .b(b), .sum(w1), .carry(ww2));
halfadd U2(.a(w1), .b(cin), .sum(sum), .carry(w3));

assign carry = w2 | w3;

endmodule

No
declarada

Estructura de Computadores – Pilar Parra 22

• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos:

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad

Estructura de Computadores – Pilar Parra 23

• Al declarar un vector se define su tamaño (rango máximo)

– Puede ser descendente o ascendente
– Puede contener expresiones (constantes y conocidas antes de la

simulación)
– Por defecto las componentes del vector no tienen signo, si se

quieren cantidades con signo, serán en notación complemento a
2 y se ha de declarar como reg signed

Vectores y arrays

reg signed [7:0] svec8;
reg [7:0] usvec8;

initial begin
svec8 = 8'b11001101; // -51
usvec8 = 8'b11001101; // 205

. . .

parameter N=8;
reg [N-1:0] in;

module mux4 (
input wire [3:0] a,b,
input wire sel,
output reg [3:0] op

);
always @(a, b, sel)

if(sel== 1)
op = b;

else
op = a;

endmodule

Estructura de Computadores – Pilar Parra 24

• Verilog permite arrays (matrices)

– De cualquier tipo
– Con cualquier número de dimensiones (a nivel RT se usan dos

dimensiones)

• Los arrays multidimensionales se usan para

– Modelar memorias
– Declarar grupos de registros

Vectores y arrays

07

07

.

.

.

registro[0]

registro[15]

data_in

8

data_in

8

data_out

8

data_out

8
wen rst

/* Declaración de un array de 16 registros de
8 bits */
reg [7:0] registro [0:15];

// registro == array de bits
// registro [5] == uno de los registros de 8
// bits (el 6º)
// registro[5][2] == bit 2 del registro[5]

Estructura de Computadores – Pilar Parra 25

• Ejemplo:

module memoria_simple (
input wire clk,
input wire we,
input wire [7:0] addr,
input wire [7:0] data_in,
output wire [7:0] data_out
);

reg [7:0] mem [255:0];

always @(posedge clk) begin
if (we) begin

mem[addr] <= data_in;
end

end
assign data_out = mem[addr];

endmodule

Vectores y arrays
we

addr
data_in

88

8

data_out
clk

Esta memoria contiene 256
palabras de 8 bits

Asignamos data_in (8 bits)
al byte dado por mem[addr],

por ejemplo, si addr que es un
vector de 8 bits contiene el
valor 00110110 -> 54
haríamos mem[54] <- data_in
(ambos son vectores de 8 bits)

Estructura de Computadores – Pilar Parra 26

• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos:

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad

Estructura de Computadores – Pilar Parra 27

• Un literal numérico es una representación explícita y fija
de un valor

– Permiten especificar el ancho, la base y el valor
• 8'd255: Literal de 8 bits en base decimal con valor 255 (1111 1111)

• 16'hA5A5: Literal de 16 bits en base hexadecimal con valor A5A5
(1010 0101 1010 0101)

• 4'b1010: Literal de 4 bits en base binaria con valor 1010

• 8'b1010_0101: Se admiten “_” para mejorar la legibilidad

• 8’o123: Literal de 8 bits en base octal con valor 123 (01010011)

• Si se omite, la base por defecto es 10

• Cuando asignamos un literal a un vector no es necesario
que tengan el mismo tamaño

– El valor se extiende con 0 o se trunca al tamaño del vector

Literales y bases

Estructura de Computadores – Pilar Parra 28

• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos:

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad

Estructura de Computadores – Pilar Parra 29

• Sentencia condicional if-else

– Su sintaxis es:
if (expresion)

comando1;

else

comando2;

– También:

if (expresion1)

comando1;

else if (expresion2)

comando2;

else if (expresion3)

comando3;

else comando4;

Procedimientos: sentencias condicionales

Estructura de Computadores – Pilar Parra 30

• Sentencia condicional if-else, ejemplo (I):

module flip_flop_d_reset(

input wire clk, rst, d,

output reg q

);

always@(posedge clk) begin

if (rst == 1'b1)

q <= 1'b0;

else

q <= d;

end

endmodule

Procedimientos: sentencias condicionales

d
q

rst

clk

rst d q

1 X
0 0
0 1

0
0
1

Estructura de Computadores – Pilar Parra 31

• Sentencia condicional if-else, ejemplo (II):

module contador_con_reset (

input wire clk, rst, up,

output reg [3:0] cuenta);

always@(posedge clk) begin

if (rst == 1'b1)

cuenta <= 4'b0000;

else if (up == 1’b1)

cuenta <= cuenta + 1;

end

endmodule

Procedimientos: sentencias condicionales

up

cuenta

rst
clk

4

rst up cuenta

1 X
0 1
0 0

0
cuenta + 1

cuenta

Para rst asíncrono, se debe incluir el
mismo en la lista de sensibilidad:

always @(posedge clk, posedge rst)

Estructura de Computadores – Pilar Parra 32

• Sentencia condicional if-else, ejemplo (III):

module comparador(
input wire [3:0] a, b,
output reg g, e, l);

always @* begin
g=0;
e=0;
l=0;
if (a>b)

g=1;
else if (a<b)

l=1;
else

e=1;
end

endmodule

Procedimientos: sentencias condicionales

a a>b
comparador

4

4
b

a=b

a<b

g

e

l

g e l

a > b
a = b
a < b

1 0 0
0 1 0
0 0 1

Estructura de Computadores – Pilar Parra 33

• Sentencia case

– Su sintaxis es:
case (expresion)

valor1: sentencia1;

valor2: sentencia2;

valor3: sentencia3;

default: sentencia4;

endcase

– default es opcional, aunque recomendable

Procedimientos: sentencias condicionales

Estructura de Computadores – Pilar Parra 34

• Sentencia case, ejemplo (I):
module multiplexor_4a1 (

input wire [1:0] sel,

input wire [3:0] data_in,

output reg data_out);

always @* begin

case (sel)

2'b00: data_out = data_in[0];

2'b01: data_out = data_in[1];

2'b10: data_out = data_in[2];

2'b11: data_out = data_in[3];

default: data_out = 1'bx; // Valor 'x' para el caso por defecto

endcase // p.ej: si sel valiese 2'b0x, 2'bx1, 2'bxz, etc.

end

endmodule

Procedimientos: sentencias condicionales

2

data_out

data_in[0] 0
1
2
3

data_in[1]
data_in[2]

data_in[3]

sel

Estructura de Computadores – Pilar Parra 35

• Sentencia case, ejemplo (II):
module alu_simple (

input wire [1:0] op,

input wire [3:0] a,

input wire [3:0] b,

output reg [3:0] result);

always @* begin

case (op)

2'b00: result = a + b; // Suma

2'b01: result = a - b; // Resta

2'b10: result = a & b; // AND

2'b11: result = a | b; // OR

default: result = 4'bx; // Valor 'x’ del caso por defecto

endcase

end

endmodule

Procedimientos: sentencias condicionales

result

a b

op

44

2

4

op[1:0] result

0 0
01
10
11

a+b
a-b

AND(a,b)
OR(a,b)

Estructura de Computadores – Pilar Parra 36

• Bucle for

– Su sintaxis es:
for (initializacion; expresion; step)

sentencia;

– El bucle for comienza con la inicialización y evalúa
la expresión, si esta se cumple realiza la sentencia
y ejecuta la función step.

– Permite escribir código más compacto y legible si
se trabaja con estructuras repetitivas

Procedimientos: bucles

Estructura de Computadores – Pilar Parra 37

• Bucle for, ejemplo (I):

module paridad_impar_4bits(
input wire [3:0] a,
output reg paridad);

integer i;
always @* begin

paridad = 1'b0;
for (i = 0; i <= 3; i=i+1)

paridad = paridad ^ a[i];
end

endmodule

Procedimientos: bucles

a[3:0] paridad

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

. . .
1 1 0 1
1 1 1 0
1 1 1 1

0
1
1
0

. . .
1
1
0

paridad

0
a[0]
a[1] xor a[0],
a[2] xor a[1] xor a[0]
a[3] xor a[2] xor a[1] xor a[0]

Estos valores va

tomando la salida
en cada iteración

Estructura de Computadores – Pilar Parra 38

• Bucle for, ejemplo (II):

module banco_registros (
input wire clk, rst, wen,
input wire [3:0] addr [0:15],
input wire [7:0] data_in [0:15],
output wire [7:0] data_out [0:15]);

reg [7:0] registro [0:15]; // Declaración de un array de 16 registros de 8 bits
integer i;

// Lógica de escritura
always @(posedge clk) begin

if(rst)
for (i = 0; i < 15; i=i+1)

registro[i] <= 8'b00000000;
else if (wen)

registro <= data_in;
end

// Lógica de lectura
assign data_out = registro;

endmodule

Procedimientos: bucles

07

07

.

.

.

registro[0]

registro[15]

data_in[0]

8

data_in[15]

8

data_out[0]

8

data_out [15]

8
wen rst

Estructura de Computadores – Pilar Parra 39

• Bucle repeat

– Su sintaxis es:
repeat (expresion)

sentencia;

– El bucle repeat evalúa la expresión para obtener un número y
ejecuta la sentencia el número de veces especificado.

– Muy usado en simulación (testbenches)

Procedimientos: bucles

// Generación de reloj:
//20 ciclos de periodo 10
repeat (20) begin
 #5 clk = ~clk;
end

Ejemplo:

Estructura de Computadores – Pilar Parra 40

• Bucle forever:

– Su sintaxis es:

forever sentencia;

– se ejecuta siempre

– sirve para definir señales en test benches para simulación

– Ejemplo:

// Generación de reloj: periodo 10 unidades

initial begin

clk = 0;

forever #5 clk = ~clk;

end

Procedimientos: bucles

Estructura de Computadores – Pilar Parra 41

• Bucle while:

– Su sintaxis es:

while (condición)

sentencia;

– ejecuta una sentencia hasta que una determinada expresión es falsa

– Ejemplo:

//Espera los ciclos de reloj necesarios hasta que completed ==1

while (completed != 1)

@(negedge clk);

Procedimientos: bucles

Estructura de Computadores – Pilar Parra 42

• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos:

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad

Estructura de Computadores – Pilar Parra 43

• Existen muchos operadores, algunos ya han
ido apareciendo, se pueden clasificar en tipos

– Aritméticos

– Relacionales

– Lógicos

• De bits, de palabras (bit a bit), de reducción

– De desplazamiento

– De concatenación y replicación

– Condicional ternario

– De asignación bloqueante y no bloqueante

Operadores

Estructura de Computadores – Pilar Parra 44

• Operadores aritméticos

• Suma: +
• a + b
• Suma de dos valores.

• Resta: -
• a - b
• Resta de dos valores.

• Multiplicación: *
• a * b
• Multiplicación de dos valores.

• División: /
• a / b
• División de dos valores (si ambos son enteros, es división entera).

• Módulo (Residuo): %
• a % b
• Devuelve el residuo de la división.

Operadores

Estructura de Computadores – Pilar Parra 45

• Operadores Relacionales y de Comparación
• Igualdad lógica: ==

• a == b
• Devuelve 1 (true) si a es igual a b.

• Desigualdad lógica: !=
• a != b
• Devuelve 1 (true) si a es diferente de b.

• Mayor que: >
• a > b

• Menor que: <
• a < b

• Mayor o igual que: >=
• a >= b

• Menor o igual que: <=
• a <= b

Operadores

Estructura de Computadores – Pilar Parra 46

• Operadores lógicos (booleanos)

• AND lógico: &&

• a && b

• True si ambos a y b son true (1).

• OR lógico: ||

• a || b

• True si al menos uno de a o b es true (1).

• NOT lógico: !

• !a

• True si a es false (0).

Operadores

Estructura de Computadores – Pilar Parra 47

• Operadores bit a bit

• AND bit a bit: &
• a & b
• Operación AND entre cada bit de a y b.

• OR bit a bit: |
• a | b
• Operación OR entre cada bit de a y b.

• XOR bit a bit: ^
• a ̂b
• Operación XOR entre cada bit de a y b.

• NOT bit a bit: ~
• ~a
• Niega cada bit de a

• Combinaciones de los mismos:
• NAND ~&, NOR ~|, XNOR ~^ o ^~

Operadores

- Ejemplos

reg [3:0] vector1, vector2, vector3;

reg [3:0] num;

initial begin

vector1 = 4'b1001;

vector2 = 4'b1010;

vector3 = 4'b11x0;

num = ~ vector1; // num = 0110

num = vector1 & 4'b0111; // num = 0001

num = vector1 & vector2; // num = 1000

num = vector1 | vector2; // num = 1011

num = vector2 & vector3; // num = 10x0

num = vector2 | vector3; // num = 1110

end

Estructura de Computadores – Pilar Parra 48

• Operadores de reducción
– Aplican una operación bit a bit y generan un único bit de

resultado:

• AND de reducción: &a

• OR de reducción: |a

• XOR de reducción: ^a

• NAND de reducción: ~&a

• NOR de reducción: ~|a

• XNOR de reducción: ~^a o ^~a

– Ejemplos:
• Si a = 4'b1010, &a = 1 & 0 & 1 & 0 = 0

• Con reg [3:0] q; &q = q[3]& q[2]& q[1]& q[0]

– En el ejemplo de la transparencia 37, bastaría hacer:
• assign paridad = ^a;

Operadores

Estructura de Computadores – Pilar Parra 49

• Operadores de desplazamiento
• Desplazamiento lógico izquierda : <<

• a = a << n; (despl. a izq., rellena con 0 por la dcha.)
• Desplazamiento lógico derecha : >>

• a = a >> n; (despl. a dcha., rellena con 0 por la izq.)
• Desplazamiento aritmético derecha con asignación: >>>

• a = a >>> n; (despl. a dcha., rellena con el bit de signo por la izq.)

- Ejemplos:

reg [7:0] vector1 , vector2;
reg signed [7:0] vectorsigno;
initial begin

vector1 = 8'b10011001;
vectorsigno = 8'b10011001;
vector2 = vector1 << 3; // 11001000 (entran 0 por la dcha.)
vector2 = vector1 >> 1; // 01001100 (entra un 0 por la izq.)
vector2 = vectorsigno >>> 1; // 11001100 (preserva signo)

end

Operadores

Estructura de Computadores – Pilar Parra 50

• Operadores de Concatenación y Replicación

• Concatenación: {}
• {a, b}
• Combina los bits de a y b en un único vector.
• Por ejemplo, si a es de 4 bits y b es de 4 bits, {a, b} será de 8 bits.
• c = {c[4:0] , c[7:5]} rota el vector c[7:0] tres posiciones a la izquierda.

• Replicación: {n{}}
• {4{a}}
• Repite el valor de a n veces.
• Por ejemplo, si a = 2'b01, entonces {4{a}} = 8'b01010101

• Operador condicional ternario:

– Evalúa una condición y asigna un valor diferente según si
dicha condición se cumple o no.
• result = <condition> ?<true value> :<false value>;

Operadores

{a, b} = 8’b10011100

Estructura de Computadores – Pilar Parra 51

• Operadores de Asignación en Procedimientos

• Asignación bloqueante: =
• Se ejecuta de forma secuencial dentro de un bloque initial o always.

• Asignación no bloqueante: <=
• Permite que las asignaciones se programen en paralelo dentro de

un bloque secuencial.
• Muy utilizado en el modelado de registros y secuencias de diseño

sin introducir dependencias de orden.

Operadores

module bloqueante(
input wire a, clk,
output reg zb
);

reg q;
always @(posedge clk) begin

q = a;
zb = q;

end
endmodule

module nobloqueante(
input wire a, clk,
output reg znb
);

reg q;
always @(posedge clk) begin

q <= a;
znb <= q;

end
endmodule

Cuando llega
el flanco activo
de reloj, zb
toma el valor
de a

Cuando llega el flanco
activo de reloj, znb
toma el valor de q y,
en el siguiente flanco,
es cuando toma el
valor de a

Estructura de Computadores – Pilar Parra 52

Operadores

module bloqueante(
input wire a, clk,
output reg zb
);

reg q;
always @(posedge clk) begin

q = a;
zb = q;

end
endmodule

module nobloqueante(
input wire a, clk,
output wire znb
);

reg q;
always @(posedge clk) begin

q <= a;
znb <= q;

end
endmodule

Cuando llega
el flanco activo
de reloj, zb
toma el valor
de a

Cuando llega el flanco
activo de reloj, znb
toma el valor de q y,
en el siguiente flanco,
es cuando toma el
valor de a

clk

a

q

zb

znb

Estructura de Computadores – Pilar Parra 53

• Resumen

• Aritméticos: +, -, *, /, %,
Comparación: ==, !=, >, <, >=, <=

• Lógicos: &&, ||, !

• Bit a bit: &, |, ^, ^~, ~^, ~ (incluyendo reducción).

• Desplazamiento: <<, >>, >>>

• Concatenación y replicación: {}, {n{}}

• Condicional ternario: ? :

• Asignación: bloqueante (=) y no bloqueante (<=)

Operadores

Estructura de Computadores – Pilar Parra 54

• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos:

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad

Estructura de Computadores – Pilar Parra 55

– parameter: constante válida en un módulo que
permite crear bloques genéricos personalizables, su
valor puede modificarse al instanciar el módulo

– localparam: constante cuyo valor es fijo y no se puede
modificar
• Permiten definir el ancho de un bus, el tamaño de un

contador, los elementos de un vector, …

• Se les asigna determinados valores que pueden ser
modificados al instanciar el módulo, sin modificar su código.

• Su uso facilita la reutilización y adaptación del módulo a
distintos contextos

• Se recomienda nombrarlos con mayúsculas para facilitar la
legibilidad

Constantes en Verilog

Estructura de Computadores – Pilar Parra 56

• Ejemplo (I):

Módulos parametrizables

module mux #(parameter WIDTH = 8) (
input wire [WIDTH-1:0] a,b,
input wire sel,
output reg [WIDTH-1:0] op
);

always @*
if (sel)

op=a;
else

op=b;
endmodule

wire [7:0] a8, b8;
reg [7:0] op8;
wire [3:0] a4, b4;
reg [3:0] op4;
wire sel;

//instanciación por defecto: WIDTH se mantiene a 8
mux mux8 (.a(a8),.b(b8),.sel,.op(op8));

// Instanciación con un ancho diferente
mux #(.WIDTH(4)) mux4 (.a(a4),.b(b4),.sel,.op(op4));

Definimos variables
de 8 y 4 bits para
comparar las
instanciaciones

Estructura de Computadores – Pilar Parra 57

• Módulos parametrizables, ejemplo (II):

Módulos parametrizables

module contador #(parameter WIDTH = 8) (
input wire clk,
input wire rst,
output reg [WIDTH-1:0] count
);

// Lógica del contador
always @(posedge clk)

if (rst)
count <= 'd0;

else
count <= count + 1;

endmodule

// Instanciación con un tamaño diferente

contador #(.WIDTH(16)) contador16bits (
.clk(clk),
.rst(rst),
.count(count16)

);

Estructura de Computadores – Pilar Parra 58

• Sintaxis:

– Declaración:
module nombre_modulo #(parameter parametro1 = valor1,

parametro2 = valor2, ...) (...);

– Redefinición al instanciar el módulo:
nombre_modulo #(.parametro1(valor1),

.parametro2(valor2), ...)

nombre_instancia (...);

– Se puede usar conexión posicional.
nombre_modulo #(valor1,valor2, ...)

nombre_instancia (...);

Módulos parametrizables

Estructura de Computadores – Pilar Parra 59

• localparam define una constante invariable

– A diferencia de parameter su valor no puede ser
redefinido al instanciarse

– Sin embargo, puede estar definido a partir de los
valores de otras constantes tipo parameter

Constantes en Verilog

module multiplicador
 #(parameter WIDTH_A = 4, WIDTH_B = 4)

(input wire [WIDTH_A-1:0] a,
input wire [WIDTH_B-1:0] b,
output reg [WIDTH_OP-1:0] result);

 localparam WIDTH_OP = WIDTH_A + WIDTH_B;
assign result = a * b;

endmodule

result

a b

nm

m+n

multiplicador

Estructura de Computadores – Pilar Parra 60

• El registro universal puede realizar todas las operaciones:

– desplazamiento a derecha e izquierda,

– carga en paralelo (operación de escritura)

– inhibición (guardar el dato)

– puesta a 0

Ejemplo: registro universal

op[1:0]

serial_in_left data_in[7:0]

data_out[7:0]

rst

serial_in_right

clk

reg_univ[8]

op[1:0] operacion

0 0
0 1
1 0
1 1

inhibición
shift left

shift right
escritura

Estructura de Computadores – Pilar Parra 61

Ejemplo: registro universal

module reg_univ #(parameter WIDTH = 8)(

input wire clk, rst,

input wire [1:0] op,

input wire serial_in_left,

input wire serial_in_right,

input wire [WIDTH-1:0] data_in,

output reg [WIDTH-1:0] data_out
);

always @(posedge clk, posedge rst) begin

if (rst)
data_out <= ‘0;

else
case (op)

2'b00: data_out <= data_out;

2'b01: data_out <= {data_out[WIDTH-2:0], serial_in_right};

2'b10: data_out <= {serial_in_left, data_out [WIDTH-1:1]};

2'b11: data_out <= data_in;

default: data_out <= ‘0;
endcase

end

endmodule

op[1:0]

serial_in_left data_in[7:0]

data_out[7:0]

rst

serial_in_right

clk

reg_univ[8]

begin

data_out <= data_out<<1;
data_out[0] <= serial_in right

end

Estructura de Computadores – Pilar Parra 62

• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos:

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad

Estructura de Computadores – Pilar Parra 63

Descripción de máquinas de estado

A

B

C

1/0

0/0

0/0

1/0

1/1

0/0

El estado inicial que
conviene definir en
este caso es el
estado A

• Se utilizará una estructura general del código en la que hay 2 tipos
de procesos

– Un proceso always para establecer las condiciones de cambio de
estado

– Uno o varios procesos always para calcular el próximo estado y las
salidas. También pueden usarse sentencias assign.

• Se incorpora reset asíncrono (puede ser síncrono) para llevar a la
máquina a un estado inicial conocido.

Estructura de Computadores – Pilar Parra 64

Descripción de máquinas de estado

module detector_3_unos (

input wire clk,

input wire rst,

input wire in,

output wire z);

parameter A=2’b00, B=2’b01, C=2’b10;

reg [1:0] state, next_state;

always @(posedge clk or posedge rst) begin

if (rst)

state <= A;

else

state <= next_state;

end

se declaran
entradas y
salidas

se asignan códigos a los estados
y se declaran las variables de
estado

procedimiento de cambio de estado:

- valor 1 en rst lleva a la máquina al estado inicial

- un flanco positivo en clk lleva a cambio de
estado

Estructura de Computadores – Pilar Parra 65

Descripción de máquinas de estado

always begin

 case (state)

 A: next_state = in ? B : A;

 B: next_state = in ? C : A;

 C: next_state = in ? C : A;

 default: next_state = A;

 endcase

 end

assign z = (state ==C && in);

endmodule

procedimiento
combinacional de cálculo
del próximo estado

case (state)

 A: if (in)

 next_state = B;

 else

 next_state = A;

 B: if (in)

 next_state = C;

 else

 next_state = A;

 C: if (in)

 next_state = C;

 else

 next_state = A;

 default: next_state = C;

endcase

podría realizarse con
if/else en lugar de la
sentencia condicional

cálculo de la salida
podría realizarse con
otro always en lugar
del assign

always
if (in==1 && state == C)

z=1;
else

z=0;

A
B

C

1/0
0/0

0/0

1/0

1/1

0/0

Estructura de Computadores – Pilar Parra 66

Descripción de máquinas de estado

module detector_3_unos (

input wire clk,

input wire rst,

input wire in,

output wire z);

parameter A=2’b00, B=2’b01, C=2’b10;

reg [1:0] state, next_state;

always @(posedge clk or posedge rst) begin

if (rst)

state <= A;

else

state <= next_state;

end

El bloque de
declaración del
módulo no cambia

El procedimiento de cambio de estado, tampoco
cambia:

- valor 1 en rst lleva a la máquina al estado inicial

- un flanco positivo en clk lleva a cambio de
estado

La misma especificación puede realizarse
mediante una máquina de Moore

En este caso la salida está asociada al
estado presente ya que no depende del
valor de la entrada de forma directa

Estructura de Computadores – Pilar Parra 67

Descripción de máquinas de estado

always begin

 case (state)

 A: next_state = in ? B : A;

 B: next_state = in ? C : A;

 C: next_state = in ? D : A;

 D: next_state = in ? D : A;

 default: next_state = A;

 endcase

 end

 assign z = (state ==D);

endmodule

always
if (state == D)

z=1;
else

z=0;

El cálculo de la salida
podría realizarse con
otro always en lugar
del assign

1

0

0

1

1

0
A,0

B,0

C,0

D,1

1

0

Estructura de Computadores – Pilar Parra 68

• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos:

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad

Estructura de Computadores – Pilar Parra 69

• Se puede usar la directiva `define para definir constantes y
macros que se reemplazan antes de la compilación del código.

• Permite cambiar fácilmente los valores de los símbolos sin
tener que editar el código.

• Sintaxis: `define SIMBOLO valor

– Ejemplo:

La directiva `define

`define CLOCK_PERIOD 10 // Define una constante: el período de reloj
module testbench;

reg clk;
. . .

initial begin
clk = 0;
forever #(`CLOCK_PERIOD / 2) clk = ~clk; // Generación del reloj

end
. . .

endmodule

Estructura de Computadores – Pilar Parra 70

• Se puede usar la directiva `include para incluir archivos fuente
externos en un código.

– Se usa principalmente en testbenches para organizar mejor el código y
reutilizar definiciones evitando el tener que repetirlas en múltiples
archivos.

• Sintaxis: `include “archivo.sv”

– Ejemplo:

La directiva `include

// constantes.sv
`define WIDTH 8
`define NUM_ENTRADAS 16

module test;
`include "constantes.sv" // Incluir archivo de constantes

reg [`WIDTH-1:0] data[`NUM_ENTRADAS-1:0];

initial begin
$display("Ancho de datos: %0d", `WIDTH);
$display("Número de entradas: %0d", `NUM_ENTRADAS);

end
endmodule

Estructura de Computadores – Pilar Parra 71

• Aspectos básicos

• Tipos de datos

• Vectores y arrays

• Literales y bases

• Procedimientos:

– sentencias condicionales
– bucles

• Operadores

• Parámetros

• Máquinas de estado

• Directivas define e include

• Simulación funcional

Esquema de la unidad

Estructura de Computadores – Pilar Parra 72

• Pasos para la simulación:

– se debe disponer de la descripción del módulo a simular
en Verilog

– hay que crear un módulo especial llamado testbench que:
• incluirá una instancia del circuito a probar (dut: design under

test)

• generará los estímulos necesarios para probar su
funcionamiento

– el testbench puede incluir bloques procedimentales: initial,
always, …

– para observar las formas de onda durante la simulación,
se usan comandos específicos:
• $dumpfile, $dumpvars, $dumpon, $dumpoff…

Simulación funcional en Verilog

Estructura de Computadores – Pilar Parra 73

• Nota: algunos entornos de diseño como ISE o Vivado no requieren
estos comandos pues usan su propio formato de volcado y permiten
añadir las ondas manualmente al simular

• Comando $dumpfile:

– Sintaxis: $dumpfile("nombre.vcd")

– Este comando indica el nombre del archivo donde se
guardará la información de la simulación, generalmente en
formato VCD (Value Change Dump). Este contendrá todos
los cambios de las señales que se especifiquen.

• Comandos $dumpon y $dumpoff:
– Permiten iniciar y detener el registro de datos durante la

simulación para generar un archivo vcd más pequeño

Simulación

Estructura de Computadores – Pilar Parra 74

• Comando $dumpvars:
– Sintaxis: $dumpvars(n, modulo)

– Con este comando se seleccionan las variables y señales que se
van a volcar en el archivo definido con $dumpfile.

– Con $dumpvars(0, top) se vuelcan todas las variables de todas
las instancias y módulos que forman parte de la simulación, es
decir, se realiza un volcado global

– También se puede limitar el volcado especificando un módulo
concreto y el número de niveles (n) de jerarquía al que se quiere
descender: $dumpvars(n, instancia)

– $dumpvars; es equivalente a $dumpvars(0, top) en Verilog

Simulación

Estructura de Computadores – Pilar Parra 75

module tb_codificador_de_prioridad;

reg [3:0] entrada;
wire [1:0] salida;

wire e;

codificador_de_prioridad dut (

.entrada(entrada),

.salida(salida),

.e(e)

);

initial begin

$dumpfile("codificador_de_prioridad.vcd");
$dumpvars(0, tb_codificador_de_prioridad);

end

initial begin
entrada = 4'b0000;

#10;
entrada = 4'b0001;
#10;

entrada = 4'b0010;
#10;

Organización de un testbench

entrada = 4'b0011;

#10;
entrada = 4'b0100;
#10;

entrada = 4'b1000;
#10;
entrada = 4'b1010;

#10;
entrada = 4'b0111;
#10;

$finish;
end

endmodule

El testbench es

un módulo sin
entradas ni
salidas

Se declaran

señales de
prueba para
conectarlas al

módulo a probar

Se instancia el

módulo y se
conectan a él las
señales de prueba

En este bloque

initial se
incorporan los
comandos para que

se generen formas
de onda.

En este bloque initial

se fijan los valores de
las entradas y se
establece el final de la

simulación.

Estructura de Computadores – Pilar Parra 76

• El simulador nos muestra entradas y salidas para los casos probados:
0000,0001,0010,0011,0100,1000,1010,0111

• Cada valor se mantiene durante 10ns (ver más adelante unidades)

• La salida nos muestra en cada caso el código de la entrada más prioritaria que valga 1.

• El bus de entrada ha sido desplegado para apreciar mejor las entradas

• El bus de salida se muestra en base 10

Resultado de la simulación

Estructura de Computadores – Pilar Parra 77

module tb_codificador_de_prioridad;

reg [3:0] entrada;
wire [1:0] salida;

wire e;

codificador_de_prioridad dut (

.entrada(entrada),

.salida(salida),

.e(e)

);
initial begin

$dumpfile("codificador_de_prioridad.vcd");

$dumpvars(0, tb_codificador_de_prioridad);
end

initial begin
entrada = 4’b0000;
#160;

$finish;
end

always begin
#10;

entrada = entrada + 1’b1;

end
endmodule

Organización de un testbench

En este bloque

initial solo se
proporciona el
valor inicial de las

entradas y se
establece el final
de la simulación

En este bloque always

se cubren todas las
posibilidades de
entrada.

Otra opción para

la organización
del testbench

Estructura de Computadores – Pilar Parra 78

Resultado de la simulación

• El simulador nos muestra entradas y salidas para todos los casos posibles de entrada (son 16):
0000,0001,0010, …, 1101,1110,1111

• Cada valor se mantiene durante 10ns (ver más adelante unidades)

• La salida nos muestra en cada caso el código de la entrada más prioritaria que valga 1.

• El bus de entrada ha sido desplegado para apreciar mejor las entradas

• El bus de salida se muestra en base 10

Estructura de Computadores – Pilar Parra 79

• El tiempo se puede expresar con el símbolo # seguido de un
valor numérico entero o en punto fijo seguido (sin espacio) por
una unidad de tiempo (fs ps ns us ms s)

– Ejemplo: #10ns

• Existe una directiva `timescale que fija las unidades de tiempo
y la precisión en la simulación

– Sintaxis: ‘timescale unidad/precisión

• Ejemplo: ‘timescale 1ns/100ps (usar 1, 10, 100)

• Si al expresar el tiempo no se incluyen unidades se entiende
que se usa la indicada en la directiva `timescale

– El simulador redondea las cantidades a la precisión establecida.

Unidades de tiempo

Estructura de Computadores – Pilar Parra 80

• Se puede imprimir información durante la simulación
mediante las funciones $display y $monitor. Ambas escriben
con formato.

• $display imprime el mensaje una sola vez: en el punto donde
se incluye.

– Ejemplo:
• $display ("Valor de la señal A = %0d", A);

• $monitor se escribe una sola vez, pero imprime el mensaje
cada vez que cambia alguna de las variables incluidas en su
lista.

– Ejemplo:
• $monitor ("Tiempo: %0d , A = %0d , B = %0d", $time, A, B);

Salida por pantalla

Estructura de Computadores – Pilar Parra 81

Salida por pantalla: $display, ejemplo

`timescale 1ns/1ns
module tb_codificador_de_prioridad;

. . .

. . .
initial begin

entrada = 4'b0000;
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
#10;
entrada = 4'b0001;
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
#10;
entrada = 4'b0010;

$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
#10;
entrada = 4'b0011;
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
#10;
entrada = 4'b0100;
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
#10;
entrada = 4'b1000;
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
#10;
entrada = 4’b1010;
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
entrada = 4’b0111;
#10;
$display("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);

. . .

. . .

Tiempo 10: entrada = 0000, salida = 00, e = 1
Tiempo 20: entrada = 0001, salida = 00, e = 0
Tiempo 30: entrada = 0010, salida = 01, e = 0
Tiempo 40: entrada = 0011, salida = 01, e = 0
Tiempo 50: entrada = 0100, salida = 10, e = 0
Tiempo 60: entrada = 1000, salida = 11, e = 0
Tiempo 70: entrada = 1010, salida = 11, e = 0
Tiempo 80: entrada = 0111, salida = 10, e = 0
testbench.sv:66: $finish called at 80 (1ns)

La salida por pantalla

muestra los resultados
con el formato solicitado
en el testbench

Incluimos la directiva ̀ timescale para fijar

las unidades de tiempo y la precisión

Estructura de Computadores – Pilar Parra 82

Salida por pantalla: $monitor, ejemplo

`timescale 1ns/1ns
module tb_codificador_de_prioridad;

. . .

. . .
initial begin

$monitor ("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e);
entrada = 4'b0000;
#10;
entrada = 4'b0001;
#10;
entrada = 4'b0010;
#10;
entrada = 4'b0011;
#10;
entrada = 4'b0100;
#10;
entrada = 4'b1000;
#10;
entrada = 4’b1010;
#10;
entrada = 4’b0111;

. . .

. . .

Con una única línea

conseguimos el mismo
efecto

Tiempo 10: entrada = 0000, salida = 00, e = 1
Tiempo 20: entrada = 0001, salida = 00, e = 0
Tiempo 30: entrada = 0010, salida = 01, e = 0
Tiempo 40: entrada = 0011, salida = 01, e = 0
Tiempo 50: entrada = 0100, salida = 10, e = 0
Tiempo 60: entrada = 1000, salida = 11, e = 0
Tiempo 70: entrada = 1010, salida = 11, e = 0
Tiempo 80: entrada = 0111, salida = 10, e = 0
testbench.sv:26: $finish called at 80 (1ns)

Estructura de Computadores – Pilar Parra 83

• Contador módulo 256 y
testbench:

module simple_counter (

input wire clk, rst,

output reg [7:0] count);

always @(posedge clk or posedge rst)

begin

if (rst)

count <= 8'd0;

else

count <= count + 1;

end

endmodule

module test_repeat_loop;
reg clk,rst;
wire [7:0] count;

simple_counter uut (
.clk (clk),
.rst (rst),
.count (count));

always begin
#5 clk = ~clk;
end

initial begin
clk=0;
rst = 1;
#12;
rst = 0;
repeat (20) @(posedge clk);
$finish;

end
endmodule

Simulación (ejemplo I)

La organización es la ya vista:

- creación de un módulo,
- declaración de señales,
- instanciación y conexión

del módulo a probar

generación de la señal de reloj

generación de estímulos

con esta línea esperamos

20 ciclos de reloj

Estructura de Computadores – Pilar Parra 84

• El simulador muestra las entradas: clk y rst y la salida de 8 bits del contador count

• El reloj es de periodo 10 tal y como se ha definido.

• En la salida se puede apreciar el reset inicial, y durante 20 ciclos de reloj la
evolución del estado del contador en decimal: 0->19

Resultado de la simulación

Estructura de Computadores – Pilar Parra 85

• Contador módulo 8 con
acarreo:

module mod8_counter (

input wire clk, rst,

output reg [2:0] count,

output reg cy);

always@(posedge clk or posedge rst)

begin

if (rst)

count <= 3'd0;

else

count <= count + 1;

end

assign cy = (count == 3'b111);

endmodule

module test_counter;

reg clk,rst;

wire [2:0] count;

wire cy;

mod8_counter uut (

.clk (clk),

.rst (rst),

.count (count),

.cy(cy));

always begin

#5 clk = ~clk;

end

Simulación (ejemplo II)

initial begin

clk=0;

rst = 1;

#15;

rst = 0;

repeat (10) @(negedge clk);

rst=1;

@(negedge clk);

rst=0;

repeat(5) @(posedge clk)

$finish;

end

endmodule

Podemos usar referencias

a ambos flancos de reloj

Estructura de Computadores – Pilar Parra 86

Resultado de la simulación

• El simulador muestra las entradas clk y rst y las salidas: los 3 bits del
contador (count) y la salida de carry (cy)

• En la salida se aprecian:

– el reset inicial y el ciclo completo de cuenta
– la activación de la salida de carry en el estado 7 (último estado de cuenta)
– otro reset que lleva al contador de nuevo al valor inicial (0)

• Es importante destacar que el reset se produce de forma asíncrona, sin
necesidad de esperar a la señal de reloj, haciendo que el estado 2 no
dure un ciclo de reloj.

– Esto es debido a que dicha señal se ha incluido en la lista de sensibilidad del
always al definir el módulo.

Estructura de Computadores – Pilar Parra 87

Resultado de la simulación

• Si se desea que la señal de reset sea síncrona basta con excluirla de la
lista de sensibilidad.

• La respuesta en este caso es:

Con always @(posedge clk or posedge rst)

rst es asíncrona

Con always @(posedge clk)

rst es síncrona

Estructura de Computadores – Pilar Parra 88

• El registro universal puede realizar todas las operaciones:

– desplazamiento a derecha e izquierda,

– carga en paralelo (operación de escritura)

– inhibición (guardar el dato)

– puesta a 0

Simulación(ejemplo III): registro universal

op[1:0]

serial_in_left data_in[7:0]

data_out[7:0]

rst

serial_in_right

clk

reg_univ[8]

op[1:0] operacion

0 0
0 1
1 0
1 1

inhibición
shift left

shift right
escritura

Recordamos
el módulo

Estructura de Computadores – Pilar Parra 89

Simulación(ejemplo III)

module reg_univ #(parameter WIDTH = 8)(

input wire clk, rst,

input wire [1:0] op,

input wire serial_in_left,

input wire serial_in_right,

input wire [WIDTH-1:0] data_in,

output reg [WIDTH-1:0] data_out
);

always @(posedge clk, posedge rst) begin

if (rst)
data_out <= ‘0;

else
case (op)

2'b00: data_out <= data_out;

2'b01: data_out <= {data_out[WIDTH-2:0], serial_in_right};

2'b10: data_out <= {serial_in_left, data_out [WIDTH-1:1]};

2'b11: data_out <= data_in;

default: data_out <= ‘0;
endcase

end

endmodule

op[1:0]

serial_in_left data_in[7:0]

data_out[7:0]

rst

serial_in_right

clk

reg_univ[8]

begin

data_out <= data_out<<1;
data_out[0] <= serial_in right

end

Recordamos
el módulo

Estructura de Computadores – Pilar Parra 90

Simulación(ejemplo III)

module tb_reg_univ;

parameter WIDTH = 8;

reg clk;

reg rst;
reg [1:0] op;
reg serial_in_left;

reg serial_in_right;
reg [WIDTH-1:0] data_in;
wire [WIDTH-1:0] data_out;

reg_univ #(.WIDTH(WIDTH)) dut (
.clk(clk),

.rst(rst),

.op(op),

.serial_in_left(serial_in_left),

.serial_in_right(serial_in_right),

.data_in(data_in),

.data_out(data_out)

);

initial begin

clk = 0;
forever #5 clk = ~clk;

end

op[1:0]

serial_in_left data_in[7:0]

data_out[7:0]

rst

serial_in_right

clk

reg_univ[8]

initial begin

$dumpfile (”dump.vcd");
$dumpvars (0, tb_reg_univ);

end

initial begin
rst = 1;

op = 2'b00;
data_in = '0;
serial_in_left = 0;

serial_in_right = 0;

#10;

rst = 0; //desactiva reset

@(posedge clk);

op = 2'b11; // carga en paralelo
data_in = 8'hA5; // Valor de prueba
@(posedge clk);

@(posedge clk);
op = 2'b00; // inhibición

data_in = 8'hFF; // data_in no afecta
@(posedge clk);

@(posedge clk);

op = 2'b01; // Shift left
serial_in_right = 1; // Bit que entra
@(posedge clk);

@(posedge clk);

op = 2'b10; // Shift right
serial_in_left = 1; // Bit que entra
@(posedge clk);

// Finalización de la simulación
#20;

$finish;
end

endmodule

Estructura de Computadores – Pilar Parra 91

Test del registro universal: resultado

Reset inicial Carga Inhibición Left Right

op[1:0] operacion

0 0

0 1
1 0
1 1

inhibición

shift left
shift right
escritura

	Slide 1: Tema 1 Introducción a Verilog
	Slide 2: Objetivos
	Slide 3: Esquema de la unidad
	Slide 4: Aspectos básicos de Verilog
	Slide 5: Aspectos básicos de Verilog
	Slide 6: Aspectos básicos de Verilog
	Slide 7: Aspectos básicos de Verilog
	Slide 8: Aspectos básicos de Verilog
	Slide 9: Aspectos básicos de Verilog
	Slide 10: Aspectos básicos de Verilog
	Slide 11: Aspectos básicos de Verilog
	Slide 12: Aspectos básicos de Verilog
	Slide 13: Aspectos básicos de Verilog
	Slide 14: Aspectos básicos de Verilog
	Slide 15: Aspectos básicos de Verilog
	Slide 16: Aspectos básicos de Verilog
	Slide 17: Aspectos básicos de Verilog
	Slide 18: Esquema de la unidad
	Slide 19: Tipos de datos en Verilog
	Slide 20: Constantes en Verilog
	Slide 21: Tipos de datos en Verilog
	Slide 22: Esquema de la unidad
	Slide 23: Vectores y arrays
	Slide 24: Vectores y arrays
	Slide 25: Vectores y arrays
	Slide 26: Esquema de la unidad
	Slide 27: Literales y bases
	Slide 28: Esquema de la unidad
	Slide 29: Procedimientos: sentencias condicionales
	Slide 30: Procedimientos: sentencias condicionales
	Slide 31: Procedimientos: sentencias condicionales
	Slide 32: Procedimientos: sentencias condicionales
	Slide 33: Procedimientos: sentencias condicionales
	Slide 34: Procedimientos: sentencias condicionales
	Slide 35: Procedimientos: sentencias condicionales
	Slide 36: Procedimientos: bucles
	Slide 37: Procedimientos: bucles
	Slide 38: Procedimientos: bucles
	Slide 39: Procedimientos: bucles
	Slide 40: Procedimientos: bucles
	Slide 41: Procedimientos: bucles
	Slide 42: Esquema de la unidad
	Slide 43: Operadores
	Slide 44: Operadores
	Slide 45: Operadores
	Slide 46: Operadores
	Slide 47: Operadores
	Slide 48: Operadores
	Slide 49: Operadores
	Slide 50: Operadores
	Slide 51: Operadores
	Slide 52: Operadores
	Slide 53: Operadores
	Slide 54: Esquema de la unidad
	Slide 55: Constantes en Verilog
	Slide 56: Módulos parametrizables
	Slide 57: Módulos parametrizables
	Slide 58: Módulos parametrizables
	Slide 59: Constantes en Verilog
	Slide 60: Ejemplo: registro universal
	Slide 61: Ejemplo: registro universal
	Slide 62: Esquema de la unidad
	Slide 63: Descripción de máquinas de estado
	Slide 64: Descripción de máquinas de estado
	Slide 65: Descripción de máquinas de estado
	Slide 66: Descripción de máquinas de estado
	Slide 67: Descripción de máquinas de estado
	Slide 68: Esquema de la unidad
	Slide 69: La directiva `define
	Slide 70: La directiva `include
	Slide 71: Esquema de la unidad
	Slide 72: Simulación funcional en Verilog
	Slide 73: Simulación
	Slide 74: Simulación
	Slide 75: Organización de un testbench
	Slide 76: Resultado de la simulación
	Slide 77: Organización de un testbench
	Slide 78: Resultado de la simulación
	Slide 79: Unidades de tiempo
	Slide 80: Salida por pantalla
	Slide 81: Salida por pantalla: $display, ejemplo
	Slide 82: Salida por pantalla: $monitor, ejemplo
	Slide 83: Simulación (ejemplo I)
	Slide 84: Resultado de la simulación
	Slide 85: Simulación (ejemplo II)
	Slide 86: Resultado de la simulación
	Slide 87: Resultado de la simulación
	Slide 88: Simulación(ejemplo III): registro universal
	Slide 89: Simulación(ejemplo III)
	Slide 90: Simulación(ejemplo III)
	Slide 91: Test del registro universal: resultado

