Instituto de

Microelectrénica
de Sevilla

Tema 1l

Introduccion a Verilog

Instituto de

Objetivos Mgt

* Presentar las caracteristicas basicas del lenguaje de
descripcion de hardware Verilog

* Introducir las palabras claves del lenguaje y sus reglas
* Introducir el diseno jerarquico

* Presentar los tipos de datos, operadores y estructuras del
lenguaje

* Mostrar la descripcion de médulos basicos
combinacionales y secuenciales

* Mostrar la descripcion de estimulos para simulacion
(testbench)

Instituto de

Esquema de la unidad e

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles
 QOperadores

e Parametros
 Maquinas de estado
e Directivas define e include

 Simulacion funcional

Aspectos basicos de Verilog

* Descripcion de moédulos de
diseho

Comienza con la palabra clave
module

Se declaran la lista de entradas y
salidas del modulo

Se pueden agrupar entradas (o
salidas) si son del mismo tamafo

En el cuerpo del mdédulo se
describe el comportamiento del
mismo

Se termina con la palabra clave
endmodule

Estructura de Computadores — Pilar Parra

Instituto de
Microelectrénica
de Sevilla

halfadd

e SUm
o carry

module halfadd (
input wire a,b,

output wire sum, carry);

assign sum =a

assign carry= a&b;

endmodule

I\b,

Aspectos basicos de Verilog

Instituto de
Microelectrénica
de Sevilla

* Descripcion de modulos de
diseno
— assign se utiliza para definir
una expresion logica
— N es la op. exclusive-OR
— & esla op. and

— Las palabras clave son siempre
en minusculas

— Verilog es “case-sensitive”:
diferencia mayusculas 'y
minusculas

Estructura de Computadores — Pilar Parra

halfadd

e SUm
o carry

module halfadd (
input wire a,b,

output wire sum,carry);

assign sum =a

assign carry= a&b;

endmodule

Ab;

* Reglas para los comentarios y el formato:

— Se pueden escribir comentarios de linea y de bloque

* Los comentarios de linea comienzan a partir de dos barras
consecutivas (//) y terminan al final de la linea.

* Puede ser una linea completa o solo la parte final
* Los comentarios de bloque comienzan con (/*) y terminan
con (*/)
— Verilog es un lenguaje sin formato

* Se puede organizar el codigo como se quiera

* Se recomienda usar espacios, tabulaciones y fin de linea, de
modo que el codigo sea legible

* En general, no se deberia poner mas de una sentencia
ejecutable por linea.

Instituto de

Microe lectrénica

Instituto de
Microelectrénica

de Sevilla

* Disefo jerarquico:

— Podemos construir nuevos modulos a partir de otros

d — SUMm
b —— fulladd
. . carry
cin |
Ul U2
halfadd wl halfadd
a a sum a sum sum
b b carry b carry
w3
cin
w2 . carry

Estructura de Computadores — Pilar Parra 7

Aspectos basicos de Verilog

Instituto de
Microelectrénica
de Sevilla

* Diseno jerarquico:

— Es necesario: u1
. halfadd
e Declarar las variables locales 2 a sum
b b carry
* |nstanciar los moédulos

wl

u2

halfadd
a sum

b carry

— Dar a cada instancia un nombre «cin

— Conectar los puertos de entrada
y salida de cada instancia

w2

w3

sum

carry

modaule fulladd (input wire a, b, cin,
output wire sum, carry);

wire wl,w2,w3;

halfadd U1(.a(a), .b(b), .sum(w1), .carry(w2));
halfadd U2(.a(w1), .b(cin), .sum(sum), .carry(w3));

assign carry = w2 | w3;

endmodule

Aspectos basicos de Verilog

* Conexion posicional vs conexion nombrada

— Se pueden conectar puertos y variables respetando el orden de
la declaracion de los puertos en el médulo (conexidn posicional)

— No es recomendable, es facil cometer errores
— Es preferible usar la conexion nombrada (la vista anteriormente)

modaule fulladd (input wire a, b, cin,
output wi , ;

module halfadd | utput wire sum, carry)

input wire a,b, _ 1 w3 w3:

output wire sum,carry); wire wi,wz,ws;

assign carry= a&b; halfadd U2(w1,cin,sum,w3);
endmodule assign carry = w2 | w3;

endmodule

Estructura de Computadores — Pilar Parra

Instituto de
Microelectrénica

de Sevilla

* Tipos de descripcion:

— Descripcion funcional
— Descripcion estructural

— Descripcion procedimental

Estructura de Computadores — Pilar Parra 10

Instituto de
Microelectrénica

de Sevilla

* Tipos de descripcion:

— Descripcion funcional:

* Se realizan asignaciones de forma continua utilizando assign

* Representa conexiones directas de hardware que estan

constantemente activas y responden inmediatamente a
cambios en sus entradas

* Modela légica combinacional

* Todas las sentencias assign se ejecutan concurrentemente

module halfadd (
input wire a,b,
output wire sum,carry
);
assign sum = a’*b;
assign carry= a&b;
endmodule

Aspectos basicos de Verilog

* Tipos de descripcion:

— Descripcion estructural:

e Se conectan modulos que ya estan definidos previamente
mediante instanciacion

* Las puertas légicas basicas ya estan predefinidas (and, nand,
or,nor, xXor, xnor, not, buf, etc.)

* Es muy util para la interconexion de médulos creados previamente
(disefo jerarquico)

modaule fulladd (input wire a, b, cin,

U1 U2 output wire sum, carry);
halfadd wl halfadd ; .
2 eum 3 sum sum wire wl,w2,w3;
b b carry b carry
w3 halfadd Ul(a,b,w1,w2);
cin, halfadd U2(w1,cin,sum,w3);
w2 L carry

assign carry = w2 | w3;
endmodule

Instituto de
Microelectrénica

de Sevilla

* Tipos de descripcion:

— Descripcion procedimental:

e Permite el uso de estructuras de control similares a las
de los lenguajes de programacion

* Se estructura en bloques procedimentales o procesos

* Todos los bloques procedimentales se ejecutan
concurrentemente

* Dentro de cada proceso las instrucciones se ejecutan
en el orden en que estan escritas (flujo secuencial)

Instituto de
Microelectrénica

de Sevilla

* Blogues procedimentales

— Pueden definir comportamientos complejos, como logica
combinacional repetitiva o condicional

— Pueden definir circuitos con memoria (secuenciales)

— Pueden definir bancos de estimulos (testbenches) para
simulaciones
— Fundamentalmente hay dos tipos de bloques procedimentales:
 tipo always: Se ejecutan continuamente (ciclicamente)
 tipoinitial: Se ejecutan linealmente (de principio a fin una sola vez)

initial
always @(a, b, sel) 2 o~ begin

if(sel==1) op a=1,

op = b; b = 1 b=0;
else . ‘ sel =1,
op = a; #10ns;
sel=0;

end

Estructura de Computadores — Pilar Parra 14

Instituto de

Microe lectrénica

* Bloques procedimentales

— Cuando hay mas de una sentencia en un bloque,
estas han de agruparse mediante begin y end

initial
begin <« |

always @(a, b, sel) a=1;
if(sel==1) b=0:; 7
op = b; sel=1;
else #10ns;
op = a; sel=0;

end

Estructura de Computadores — Pilar Parra 15

Aspectos basicos de Verilog

* Ejemplo de concurrencia

— Un médulo puede contener multiples blogues procedimentales (initial,
always) y multiples sentencias assign y no hay orden de ejecucion
entre ellos sino que se ejecutan en paralelo (concurrencia)

— Dentro de un procedimiento las sentencias se ejecutan
secuencialmente en orden de aparicion

always begin // a periodica T=10
definen la misma H#5a = ~a:
funcion d
/ - ——, | module ejemplo2 (en
: input wire X, .
module ejemplo1 (input wire y, alway;foeﬁ'ﬁ ~b: // b periodica T=20
!nput w!re X, input wire z, . =D, periodica T=
Input wirey, output wire f1);
input wire z, o _
output wire f1); wire f0: initial b%gln
_ assigh fO=x & y; E;O’-
assignfl=x&y&z; assign f1 =0 & z; #506_
endmodule endmodule eniIﬂmSh;

Estructura de Computadores — Pilar Parra 16

* Blogues procedimentales

— Cada bloque always se ejecuta (dispara) cuando hay un evento en
alguna variable de su lista de sensibilidad que viene determinada

por una @

— En légica combinacional la lista de sensibilidad debe incluir todas
las variables

— Para la logica secuencial el evento suele ser el flanco de una senal,
es decir, se disparan en una transicion especifica de una
determinada seial.

— Se utilizan las palabras clave posedge y negedge

always @(a, b, sel) always @(posedge clock)
if(sel== 1) N <=d:
op=b; K L
else
op = a;
Lista de
sensibilidad

Estructura de Computadores — Pilar Parra 17

Instituto de

Microelectrénica
de Sevilla

Instituto de

Esquema de la unidad e

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* Operadores

* Parametros

 Maquinas de estado

e Directivas define e include
e Simulacion funcional

Tipos de datos en Verilog

— Nets, para representar conexiones. No almacenan valores.

e Se usan sobre todo para conexiones entre modulos: wire (el mas
comun y el tipo por defecto).

e Se usan en asignaciones continuas (assign), nunca en bloque
procedimentales.

— Variables, para almacenar valores.

* El mas importante: reg. Otros: integer (entero con signo de 32
bits), real, time...

* Se usan en bloques procedimentales (always, initial)

— Tipos compuestos:

e vectores: cualquier wire o reg puede ser vectorial,
— reg [15:0] data;
— wire [3:0] opcode;

* agrrays: para memorias o bancos de registros,
— reg [7:0] memoria[0:255];

Constantes en Verilog

— parameter: constante valida en un modulo que
permite crear bloques genéricos personalizables,
su valor puede modificarse al instanciar el médulo

— localparam: constante cuyo valor es fijo y no se
puede modificar

Estructura de Computadores — Pilar Parra 20

Tipos de datos en Verilog

* Tipos por defecto y declaraciones implicitas

— Una declaracidn sin tipo es wire por defecto

— Una errata en un nombre de variable puede llevar a una declaracion implicita
como wire

— Lo recomendable es declarar completamente todas las variables

— También se puede usar la directiva ‘default_nettype none de esta forma se
genera un error si se intenta usar una variable no declarada

module halfadd (module fulladd (input wire a, b, cin,

input wire a, b, output wire sum, carry);

output sum, carry);
wire wl,w2,w3;

. AR
assign sum = zb | halfadd U1(.a(a), .b(b), .sum(wl), .carry(ww2));
assign carry = asb; halfadd U2(.a(w1), .b(cin), .sum(sum), .carry(w3));

endmodule assign carry = w2 | w3;

endmodule

Estructura de Computadores — Pilar Parra 21

Instituto de

Esquema de la unidad e

* Aspectos basicos
* Tipos de datos

* \ectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* Operadores

* Parametros

 Maquinas de estado

e Directivas define e include
e Simulacion funcional

Vectores y arrays

e Al declarar un vector se define su tamaino (rango maximo)

— Puede ser descendente o ascendente
— Puede contener expresiones (constantes y conocidas antes de la
simulacion)

— Por defecto las componentes del vector no tienen signo, si se
qguieren cantidades con signo, seran en notacion complemento a

2 y se ha de declarar como reg signed

module mux4 (
input wire [3:0] a,b,
input wire sel,
output reg [3:0] op

reg signed [7:0] svec8;
reg [7:0] usvecs;

); initial begin
always @(a, b, sel) svec8 = 8'b11001101; //-51
if(sel==1) sel usvecd = 8'b11001101; // 205
op=b;
else
op = a; parameter N=8;
endmodule reg [N-1:0] in;

Estructura de Computadores — Pilar Parra 23

Instituto de

Vectores y arrays e

* Verilog permite arrays (matrices)

— De cualquier tipo

— Con cualquier numero de dimensiones (a nivel RT se usan dos
dimensiones)

* Los arrays multidimensionales se usan para

— Modelar memorias

. data_in
— Declarar grupos de registros
7 »|' 8 o
7 registro[0]
/* Declaracion de un array de 16 registros de '|' 8
8 bits */ data_out
reg [7:0] registro [0:15]; :
// registro == array de bits data_in
// registro [5] == uno de los registros de 8 7 »|' 8 0
// bits (el 62) 7 registro[15]
// registro[5][2] == bit 2 del registro[5] . «|' 8
data_out

Estructura de Computadores — Pilar Parra 24

Vectores y arrays

* Ejemplo: we
module memoria_simple (
input wire clk, 8 .
input wire we, 4 = data_in
input wire [7:0] addr, addr - 3
. . 8
input wire [7:0] data_in, —> data_out
output wire [7:0] data_out c/l\k

);

reg [7:0] mem [255:0]; «— | Esta memoria contiene 256
palabras de 8 bits

always @ (posedge clk) begin

if (we) begin _ Asignamos data_in (8 bits)
mem(addr] <= data_in; <« 3| hyte dado por mem[addr],
end
end

por ejemplo, si addr que es un
vector de 8 bits contiene el
endmodule valor 00110110 -> 54
hariamos mem[54] <- data_in
(ambos son vectores de 8 bits)

assign data_out = mem[addr];

Instituto de

Esquema de la unidad e

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* Operadores

* Parametros

 Maquinas de estado

e Directivas define e include
e Simulacion funcional

Literales y bases

* Un literal numérico es una representacion explicita y fija
de un valor

— Permiten especificar el ancho, la base y el valor

* 8'd255: Literal de 8 bits en base decimal con valor 255 (1111 1111)

16'nhAS5AS: Literal de 16 bits en base hexadecimal con valor A5A5
(1010 0101 1010 0101)

4'pb1010: Literal de 4 bits en base binaria con valor 1010
8'b1010 0101: Se admiten “_” para mejorar la legibilidad
8’0123: Literal de 8 bits en base octal con valor 123 (01010011)
Si se omite, la base por defecto es 10

* Cuando asignamos un literal a un vector no es necesario
gue tengan el mismo tamano

— El valor se extiende con 0 o se trunca al tamano del vector

Instituto de

Esquema de la unidad e

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* Operadores

* Parametros

 Maquinas de estado

e Directivas define e include
e Simulacion funcional

Instituto de

- ¢ Procedimientos: sentencias condicionales '.“c”nsn'%m;c;zsz.e.;ma

 Sentencia condicional if-else

— Su sintaxis es:
1f (expresion)
comandol;
else
comando?Z;

— También:
1f (expresionl)
comandol;
else 1f (expresion?2)
comando?Z;
else 1f (expresion3)

comando3;
else comando4;

Estructura de Computadores — Pilar Parra 29

Instituto de

Procedimientos: sentencias condicionales l—IEAnSnEE“?s’ES!ﬁ?m”“

e Sentencia condicional if-else, ejemplo (l):

module flip_flop_d_reset(|

input wire clk, rst, d, rst
output reg g _1q @
); clk

always@ (posedge clk) begin

if (rst ==1'b1)
g <=1'b0; rst d | g
else 1 xlo
q<=d; 0 010
end 0O 1|1
endmodule

Estructura de Computadores — Pilar Parra 30

SID4
Q7 &

IMSE

" & ¢ Procedimientos: sentencias condicionales -cnm'z“;fciééfﬁ’;?%nfca

Bl

* Sentencia condicional if-else, ejemplo (ll):

module contador_con_reset (—
. : — rst
input wire clk, rst, up, Ik
c cuenta
output reg [3:0] cuenta); /l\

¥4

always@ (posedge clk) begin

if (rst==1'b1) rst up cuenta
cuenta <= 4'b0000; 1 X 0

else if (up ==1"b1) 0 1 cuenta + 1
cuenta <= cuenta + 1; 0 0 cuenta

end

endmodule
Para rst asincrono, se debe incluir el

mismo en la lista de sensibilidad:

always @(posedge clk, posedge rst)

Instituto de

* & : Procedimientos: sentencias condicionales '.“c”nsn'%zﬂ:;zs:.e.;ma

* Sentencia condicional if-else, ejemplo (I11):

module comparador(
input wire [3:0] a, b,
outputreg g, e, l);

always @* begin
g=0; 4
e=0; qd £
|=0; a=b}— e
if (a>b) 4
g=1; b —<— a<b }— |
else if (a<b)
|=1;
else
gel
e=1;
end a>b 100

endmodule =b 010
a<b 001

comparador
a>br— 8

Estructura de Computadores — Pilar Parra 32

Procedimientos: sentencias condicionales "Wt

e Sentencia case

— Su sintaxis es:
case (expresion)
valorl: sentencial;
valorZ2: sentencial;
valor3: sentencia3;
default: sentenciai4;

endcase

— default es opcional, aunque recomendable

Estructura de Computadores — Pilar Parra 33

% : Procedimientos: sentencias condicionales

WY

e Sentencia case, ejemplo (l):

module multiplexor_4al (

Instituto de
Microelectrénica
de Sevilla

input wire [1:0] sel, :ata_.ln[i)] 0
input wire [3:0] data_in, ata_l.n[J—/1 data out
data_in[2] —{ 2 B
output reg data_out); , 3
data_in[3] — +
2
‘ .
always @* begin sel
case (sel)
2'b00: data_out = data_in[0];
2'b01: data_out = data_in[1];
2'b10: data_out = data_in[2];
2'b11: data_out = data_in[3];
default: data_out = 1'bx; // Valor 'x' para el caso por defecto
endcase // p.ej: si sel valiese 2'b0x, 2'bx1, 2'bxz, etc.
end
endmodule

Estructura de Computadores — Pilar Parra

34

de Sevilla

& ¢ Procedimientos: sentencias condicionales '.“c”nsn'%'ﬁ?fr‘éﬂfe"c?%m

B &

* Sentencia case, ejemplo (Il): . i
module alu_simple (1 4 1 4

input wire [1:0] op, \V4

input wire [3:0] a, op

input wire [3:0] b, 2 ’|'
4

output reg [3:0] result);

always @* begin result
case (op)
2'b00: result =a + b; // Suma op[1:0] result
2'b01: result =a - b; // Resta 00 a+b
2'b10: result =a & b; // AND 01 a-b
2'b11: result=a | b; // OR 10 AND(a,b)
default: result = 4'bx; // Valor 'x’ del caso por defecto 11 OR(a,b)
endcase
end
endmodule

Estructura de Computadores — Pilar Parra 35

Procedimientos: bucles

e Bucle for

— Su sintaxis es:
for (initializacion; expresion; step)

sentencia;

— El bucle for comienza con la inicializacion y evalua
la expresion, si esta se cumple realiza |la sentencia
y ejecuta la funcion step.

— Permite escribir codigo mas compacto y legible si
se trabaja con estructuras repetitivas

Estructura de Computadores — Pilar Parra 36

Procedimientos: bucles

* Bucle for, ejemplo (l):

module paridad_impar_4bits(

Instituto de
Microelectrénica
de Sevilla

0
input wire [3:0] a3, 2{1} —
output reg paridad); a[2]

a[3]

integer i;
always @* begin
paridad = 1'b0;
for (i=0; i <= 3; i=i+1)
paridad = paridad * a[i];

end
endmodule
0
Estos valores va al0]

tomando lasalida | 3[1] xor a[0],

en cada iteracion a[2] xor a[1] xor a[0]
a[3] xor a[2] xor a[1] xor a[0]

a[3:0] paridad
0000 0
0001 1
0010 1
0011 0
1101 1
1110 1
1111 0

E paridad

Instituto de

Procedimientos: bucles e

* Bucle for, ejemplo (I1):

module banco_registros (
input wire clk, rst, wen,
input wire [3:0] addr [0:15],
input wire [7:0] data_in [0:15],
output wire [7:0] data_out [0:15]);

reg [7:0] registro [0:15]; // Declaracion de un array de 16 registros de 8 bits

integer i;
// Légica de escritura data_in[0]
always @(posedge clk) begin 7 18 o
Hrst) registro[0]
for (i=0; i< 15; i=i+1) + .
registrol[i] <= 8'b00000000;
else if (wen) data_out[0]

registro <= data_in;
end

_ data_in[15]
// nglca de lectura . . + 3 0
assign data_out = registro; !
endmodule registro[15]

wen rst + 8

_ data_out [15]
Estructura de Computadores — Pilar Parra 38

Procedimientos: bucles

* Bucle repeat

— Su sintaxis es:
repeat (expresion)

sentencia;

— El bucle repeat evalua la expresion para obtener un numeroy
ejecuta la sentencia el numero de veces especificado.

— Muy usado en simulacidén (testbenches)

Ejemplo:

// Generacién de reloj:
//20 ciclos de periodo 10
repeat (20) begin

#5 clk = ~clk;
end

Estructura de Computadores — Pilar Parra 39

Instituto de

Procedimientos: bucles e

* Bucle forever:

— Su sintaxis es:
forever sentencia;
— se ejecuta siempre
— sirve para definir sefales en test benches para simulacion
— Ejemplo:
// Generacioén de reloj: periodo 10 unidades
initial begin
clk = 0;
forever #5 clk = ~clk;
end

Estructura de Computadores — Pilar Parra 40

Instituto de

Procedimientos: bucles e

e Bucle while:

— Su sintaxis es:
while (condicidn)
sentencia;

— ejecuta una sentencia hasta que una determinada expresion es falsa

— Ejemplo:
//Espera los ciclos de reloj necesarios hasta que completed ==
while (completed !=1)
@(negedge clk);

Estructura de Computadores — Pilar Parra 41

Instituto de

Esquema de la unidad e

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* QOperadores

* Parametros

 Maquinas de estado

e Directivas define e include
e Simulacion funcional

Operadores

* Existen muchos operadores, algunos ya han
ido apareciendo, se pueden clasificar en tipos

— Aritméticos
— Relacionales
— Logicos
* De bits, de palabras (bit a bit), de reduccidn
— De desplazamiento
— De concatenacion y replicacion
— Condicional ternario
— De asignacion blogueante y no bloqueante

Instituto de

Operadores et

* Operadores aritméticos

* Suma: +
* a+b
 Suma de dos valores.
* Resta: -
* a-b
* Resta de dos valores.
* Multiplicacion: *
e a*b
e Multiplicacion de dos valores.
* Division: /
e a/b
* Division de dos valores (si ambos son enteros, es division entera).
 Mddulo (Residuo): %
* a%b
 Devuelve el residuo de la division.

Operadores

* Operadores Relacionales y de Comparacion

* lgualdad logica: ==

¢ ==

 Devuelve 1 (true) sia esigual a b.
e Desigualdad légica: |=

e al=b

* Devuelve 1 (true) si a es diferente de b.
* Mayor que: >

e a>b
* Menor que: <

e a<b
 Mayor o igual que: >=

e a>=b
* Menor o igual que: <=

e a<=b

Operadores

* Operadores logicos (booleanos)

* AND logico: &&

* a&&Db

* True siambos ay b son true (1).
* OR logico: ||

*allb

 True sial menosuno de aobestrue (1).
 NOT légico: !

e la

* True si a es false (0).

de Sevilla

O pera dores

 Operadores bit a bit

- Ejemplos

e AND bit a bit: & reg [3:0] vectorl, vector2, vector3;

* a&b reg [3:0] num;

* Operacion AND entre cada bitde ay b. . _

. . initial begin
* OR bit a bit: |
vectorl =4'b1001;

* alb

« Operacion OR entre cada bitde ay b. vector2 = 4'b1010;
e XOR bit a bit: vector3 = 4'b11x0;

* a”b num = ~ vectorl; // num = 0110

. opferauo.n XOR entre cada bitdeay b. num = vectorl & #b0111; // num = 0001
 NOT bit a bit: ~

. ~g num = vectorl & vector2; // num =1000

* Niega cada bit de a num = vectorl | vector2; //num=1011
e Combinaciones de los mismos: num = vector2 & vector3; // num =10x0

* NAND ~&, NOR ~|, XNOR ~" o N~ num = vector2 | vector3; //num=1110

end

Operadores

* Operadores de reduccion

— Aplican una operacion bit a bit y generan un unico bit de
resultado:

 AND de reduccidon: &a
OR de reduccion: |a
XOR de reduccion: "a
NAND de reduccion: ~&a
NOR de reduccion: ~|a
« XNOR de reducciéon: “*a o *~a
— Ejemplos:
e Sia=4'p1010,&23=1&0&1&0=0
* Conreg[3:0] g; &q=q[3]& q[2]& q[1]& q[0]
— En el ejemplo de la transparencia 37, bastaria hacer:
e assign paridad = “g;

Instituto de

Operadores i

* Operadores de desplazamiento

* Desplazamiento légico izquierda : <<
e a=a<<n;(despl. aizq., rellena con 0 por la dcha.)
* Desplazamiento légico derecha : >>
e a=a>>n; (despl.adcha., rellena con 0 por laizq.)
* Desplazamiento aritmético derecha con asignacion: >>>
e a=a>>>n; (despl. adcha,, rellena con el bit de signo por la izq.)

- Ejemplos:

reg [7:0] vectorl, vector2;
reg signed [7:0] vectorsigno;
initial begin
vectorl = 8'b10011001;
vectorsigno = 8'b10011001;
vector2 = vectorl << 3; // 11001000 (entran O por la dcha.)
vector2 = vectorl >>1; // 01001100 (entra un O por la izq.)
vector2 = vectorsigno >>>1; // 11001100 (preserva signo)
end

Estructura de Computadores — Pilar Parra 49

Operadores

* Operadores de Concatenacion y Replicacion

* Concatenacion: {}
* {a, b}
 Combina los bits de ay b en un unico vector. /
* Por ejemplo, sia es de 4 bitsy b es de 4 bits, {a, b} sera de 8 bits.
 c={c[4:0], c[7:5]} rota el vector c[7:0] tres posiciones a la izquierda.

{a, b} =8b10011100

* Replicacion: {n{}}
« {4a}}

* Repite el valor de a n veces.
* Por ejemplo, sia=2'b01, entonces {4{a}} = 8'b01010101

* Operador condicional ternario:

— Evalua una condicion y asigna un valor diferente segun si
dicha condicién se cumple o no.

* result = <condition> ?<true value> :<false value>;

Operadores

* Operadores de Asignacidon en Procedimientos

* Asignacion bloqueante: =
* Se ejecuta de forma secuencial dentro de un bloque initial o always.

* Asignacion no bloqueante: <=
* Permite que las asignaciones se programen en paralelo dentro de
un blogue secuencial.

* Muy utilizado en el modelado de registros y secuencias de diseno
sin introducir dependencias de orden.

module.bloque:.;mte(module nobloqueante(
input wire a, clk, input wire a, clk,
output reg zb output reg znb
););
€e 9, regd;
always @(posedge clk) begin always @(posedge clk) begin
q=a g<=a;
zb=q; Cuando llega 2nb <= g; Cuando llega el flanco
end el flanco activo end ’ activo de reloj, znb
endmodule de reloj, zb endmodule toma e?I vglor deqy,
toma el valor en el siguiente flanco,
de a es cuando toma el
valor de a

Operadores

Instituto de
Microelectrénica
de Sevilla

module bloqueante(
input wire a, clk,
output reg zb
);

Cuando llega
el flanco activo
de reloj, zb
toma el valor
de a

reg q;
always @(posedge clk) begin
q=a;
zb = q;
end
endmodule

Estructura de Computadores —

Pilar Parra

module nobloqueante(
input wire a, clk,
output wire znb
);
regq;

always @(posedge clk) begin

gq<=a,

znb <=q;
end
endmodule

Cuando llega el flanco
activo de reloj, znb
toma el valor de q Y,
en el siguiente flanco,
es cuando toma el
valor de a

52

Operadores

* Resumen
* Aritméticos: +, -, *, /, %,
Comparacion: ==, |=, >, <, >=, <=
e Logicos: &&, ||, !
e Bit a bit: &, [, A, A~, ~7, ~ (incluyendo reduccion).
* Desplazamiento: <<, >>, >>>
e Concatenacion y replicacion: {}, {n{}}
* Condicional ternario: ? :
e Asignacion: bloqueante (=) y no bloqueante (<=)

Estructura de Computadores — Pilar Parra 53

Instituto de

Esquema de la unidad e

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* Operadores
 Parametros

 Maquinas de estado

e Directivas define e include
e Simulacion funcional

Constantes en Verilog

— parameter: constante valida en un médulo que
permite crear bloques genéricos personalizables, su
valor puede modificarse al instanciar el modulo

— localparam: constante cuyo valor es fijo y no se puede
modificar

* Permiten definir el ancho de un bus, el tamaiho de un
contador, los elementos de un vector, ...

* Se les asigna determinados valores que pueden ser
modificados al instanciar el modulo, sin modificar su codigo.

» Su uso facilita la reutilizacion y adaptacion del modulo a
distintos contextos

* Se recomienda nombrarlos con mayusculas para facilitar la
legibilidad

Instituto de

Microelectrénica
de Sevilla

* Ejemplo (l):

module mux #(parameter WIDTH = 8) (
input wire [WIDTH-1:01] a,b, Definimos variables
input wire sel, de 8 y 4 bits para
output reg [WIDTH-1:0] op comparar las
); instanciaciones
always @ wire [7:0] a8, b8; /
if (sel) reg [7:0] opS8;
op=a; wire [3:0] a4, b4;
else reg [3:0] op4;
op=b; wire sel;
endmodule

//instanciacion por defecto: WIDTH se mantiene a 8
mux mux8 (.a(a8),.b(b8),.sel,.op(op8));

// Instanciacion con un ancho diferente
mux #(.WIDTH(4)) mux4 (.a(a4),.b(b4),.sel,.op(op4));

Instituto de

Microelectrénica
de Sevilla

 Modulos parametrizables, ejemplo (ll):

module contador #(parameter WIDTH = 8) (
input wire clk,
input wire rst,
output reg [WIDTH-1:0] count
);
// Légica del contador
always @(posedge clk)

if (rst)
count <= 'd0;
else — ——
count <= count + 1: // Instanciacion con un tamafio diferente
endmodule contador #(.WIDTH(16)) contador16bits (
.clk(clk),
.rst(rst),
.count(countl16)

Estructura de Computadores — Pilar Parra 57

e Sintaxis:

— Declaracion:

module nombre_modulo #(parameter parametro1 = valor1,
parametro2 = valor2, ...) (...);

— Redefinicion al instanciar el modulo:

nombre_modulo #(.parametroi(valor1),
.parametro2(valor2), ...)
nombre_instancia (...);

— Se puede usar conexion posicional.

nombre_modulo #(valori,valor2, ...)
nombre_instancia (...);

Estructura de Computadores — Pilar Parra 58

Constantes en Verilog

* |localparam define una constante invariable

Est

— A diferencia de parameter su valor no puede ser

redefinido al instanciarse

— Sin embargo, puede estar definido a partir de los
valores de otras constantes tipo parameter

module multiplicador
#(parameter WIDTH_A =4, WIDTH_B = 4)

(input wire [WIDTH_A-1:0] a,
input wire [WIDTH_B-1:0] b,
output reg [WIDTH_OP-1:0] result);

localparam WIDTH_OP = WIDTH_A + WIDTH_B;
assign result =a * b;

endmodule

a b
tm 4

multiplicador

ructura de Computadores — Pilar Parra

‘I’ m-+n

result

59

Instituto de

Microelectrénica
de Sevilla

* Elregistro universal puede realizar todas las operaciones:

— desplazamiento a derecha e izquierda,

— carga en paralelo (operacién de escritura)
— inhibicidn (guardar el dato)

— puestaa O

serial in left data_in[7:0] serial_in_right
- | — op[1:0] | operacion

00 inhibicion

op[1:0] = reg_univ[8] 01 | shiftleft
rst — A 10 shift right

| | 11 escritura

clk data_out[7:0]

Instituto de
Microelectrénica

de Sevilla

module reg_univ #(parameter WIDTH = 8)(

input wire clk, rst,
input wire [1:0] op,
input wire serial_in_left, serial_in_left data_in[7:0] serial_in_right
input wire serial_in_right, T | —
input wire [WIDTH-1:0] data_in,
output reg [WIDTH-1:0] data_out op[1:0] — reg_univ[8]
) rst — A

always @(posedge clk, posedge rst) begin | |
if (rst) clk data_out[7:0]
data_out <= ‘0;
else

case (op)
2'b00: data_out <= data_out;

2'b01: data_out <= {data_out[WIDTH-2:0], serial_in_right};
2'b10: data_out <= {serial_in_left, data_out [WIDTH-1:1]};
2'b11: data_out <=data_in;

default: data_out <= ‘0; begin
endcase data_out <= data_out<<1;
end data_out[0] <= serial_in right
endmodule end

Instituto de

Esquema de la unidad e

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* Operadores

* Parametros

 Maquinas de estado

e Directivas define e include
e Simulacion funcional

Descripcion de maquinas de estado 'MSrE

e Se utilizara una estructura general del cédigo en la que hay 2 tipos
de procesos

— Un proceso always para establecer las condiciones de cambio de
estado

— Uno o varios procesos always para calcular el proximo estado y las
salidas. También pueden usarse sentencias assign.

* Seincorpora reset asincrono (puede ser sincrono) para llevar a la
maquina a un estado inicial conocido.

El estado inicial que
conviene definir en
este caso es el
estado A

Descripcion de maquinas de estado 'Msn'%

module detector_3_unos (

input wire clk, se declaran
input wire rst, entradasy
input wire in, salidas

output wire z);

se asignan codigos a los estados

parameter A=2'b00, B=2'b01, C=2"b10; y se declaran las variables de

reg [1:0] state, next_state; estado
always @(posedge clk or posedge rst) begin ™
if (rst) \
state <= A;
else procedimiento de cambio de estado:

state <= next_state, o o
end -valor 1 en rst lleva a la maquina al estado inicial

- un flanco positivo en clk lleva a cambio de
estado

Estructura de Computadores — Pilar Parra 64

Descripcion de maquinas de estado 'Msn'%

procedimiento case (state)
combinacional de calculo A: if (in)
del préximo estado

next_state = B;

else
always@* begin !oodrl'a realizarse con next_state = A;
if/else en lugar de la B: if (in)
case (state) sentencia condicional next_state = C:

A: next_state=in? B: A; / |
: else
B: next_state=in?C: A;

next_state = A;

C: next_state=in? C: A; S s
C: if (in)
default: next_state = A;) ,
4 calculo de la salida next_state = C;
endcase podria realizarse con alse
end
- . / otro always en lugar next state = A;
assign z = (state ==C && in); del assign —
default: next_state = C;
endmodule —
always @* endcase
if (in==1 && state == C)
z=1;
else
z=0;

Descripcion de maquinas de estado 'MSrE

La misma especificacidn puede realizarse

module detector_3_unos (

input wire clk,

NoUt Wi ¢ El bloque de

!npu w!re -rs ! declaracion del
Input wire in, modulo no cambia

output wire z);

parameter A=2'b00, B=2'b01, C=2"b10;
reg [1:0] state, next_state;

always @(posedge clk or posedge rst) begin
if (rst)
state <= A;
else
state <= next_state;
end

mediante una maquina de Moore

En este caso la salida esta asociada al
estado presente ya que no depende del
valor de la entrada de forma directa

El procedimiento de cambio de estado, tampoco
cambia:

- valor 1 en rst lleva a la maquina al estado inicial

- un flanco positivo en clk lleva a cambio de
estado

always @* begin
case (state)
A: next_state=in? B : A;
B: next_state=in? C:A;
C:next_state=in?D:A;
D: next_state=in?D:A;
default: next_state = A;
endcase
end
assign z = (state ==D);
endmodule ’\

\

always @*
if (state == D)
z=1;
else

z=0;

El calculo de la salida
_— | podria realizarse con
otro always en lugar
del assign

Estructura de Computadores — Pilar Parra

67

Instituto de

Microelectrénica
de Sevilla

Instituto de

Esquema de la unidad e

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* Operadores

* Parametros

 Maquinas de estado

e Directivas define e include
e Simulacion funcional

La directiva ‘define

 Se puede usar la directiva define para definir constantes 'y
macros que se reemplazan antes de la compilacion del codigo.

e Permite cambiar facilmente los valores de los simbolos sin
tener que editar el cédigo.

e Sintaxis: define SIMBOLO valor

— Ejemplo:
‘define CLOCK_PERIOD 10 // Define una constante: el periodo de reloj

module testbench;
reg clk;

initial begin

clk =0;

forever #('CLOCK_PERIOD / 2) clk = ~clk; // Generacién del reloj
end

endmodule

La directiva ‘include

* Se puede usar la directiva ‘include para incluir archivos fuente
externos en un coédigo.

— Se usa principalmente en testbenches para organizar mejor el codigo y
reutilizar definiciones evitando el tener que repetirlas en multiples
archivos.

 Sintaxis: include “archivo.sv”

— Ejemplo:
// constantes.sv module test;
‘define WIDTH 8 ‘include "constantes.sv" // Incluir archivo de constantes

‘define NUM_ENTRADAS 16
reg [WIDTH-1:0] data[NUM_ENTRADAS-1:0];

initial begin
Sdisplay("Ancho de datos: %0d", "WIDTH);
Sdisplay("NUmero de entradas: %0d", 'NUM_ENTRADAS);
end
endmodule

Instituto de

Esquema de la unidad e

* Aspectos basicos
* Tipos de datos

* Vectoresy arrays
* Literalesy bases

* Procedimientos:

— sentencias condicionales
— bucles

* Operadores

* Parametros

 Maquinas de estado

e Directivas define e include
e Simulacion funcional

« Pasos para la simulacion:

— se debe disponer de la descripcion del modulo a simular
en Verilog

— hay que crear un mddulo especial llamado testbench que:

. incll)Jiré una instancia del circuito a probar (dut: design under
test

* generara los estimulos necesarios para probar su
uncionamiento

— el testbench puede incluir blogues procedimentales: initial,
always, ...

— para observar las formas de onda durante la simulacion,
se usan comandos especificos:

« $dumpfile, $dumpvars, $dumpon, $dumpoff...

| I I l 1A Instituto de
I u a C I O n Microelectrénica
de Sevilla

« Nota: algunos entornos de diseno como ISE o Vivado no requieren
estos comandos pues usan su propio formato de volcado y permiten
anadir las ondas manualmente al simular

* Comando Sdumpfile:

— Sintaxis: Sdumpfile("nombre.vcd")

— Este comando indica el nombre del archivo donde se
guardara la informacion de la simulacion, generalmente en
formato VCD (Value Change Dump). Este contendra todos

los cambios de las senales que se especifiquen.

 Comandos Sdumpon y Sdumpoff:

— Permiten iniciar y detener el registro de datos durante |la
simulacion para generar un archivo vcd mas pequeno

Estructura de Computadores — Pilar Parra 73

Instituto de

[] ° V4
S I I I l u I a C I O n Microelectrénica
de Sevilla

e Comando Sdumpvars:
— Sintaxis: Sdumpvars(n, modulo)

— Con este comando se seleccionan las variables y sefales que se
van a volcar en el archivo definido con Sdumpfile.

— Con Sdumpvars(0, top) se vuelcan todas las variables de todas
las instancias y médulos que forman parte de la simulacion, es
decir, se realiza un volcado global

— También se puede limitar el volcado especificando un modulo
concreto y el nimero de niveles (n) de jerarquia al que se quiere
descender: Sdumpvars(n, instancia)

— Sdumpvars; es equivalente a Sdumpvars(0, top) en Verilog

Estructura de Computadores — Pilar Parra 74

Organizacion de un testbench

El testbench es
un modulo sin
entradas ni
salidas

Se declaran
sefales de
prueba para
conectarlas al
maodulo a probar

Se instancia el
modulo y se
conectan a él las
sefales de prueba

initial se
incorporan los
comandos para que
se generen formas
de onda.

Instituto de
Microelectrénica
de Sevilla

" Sdumpvars(0, tb_codificador_de_prioridad);
En este bloque / e

module tb_codificador_de_prioridad;

reg [3:0] entrada;
+ Wire [1:0] salida;
wire €;

codificador_de_prioridad dut (
.entrada(entrada),
.salida(salida),
.e(e)

);

initial begin

entrada =4'b0011;
#10;

entrada = 4'b0100;
#10;

entrada = 4'b1000;
#10;

entrada =4'b1010;
#10;

entrada =4'b0111;
#10;

Sfinish;

end
endmodule

Sdumpfile("codificador_de_prioridad.vcd");

initial begin
entrada = 4'b0000;
#10;
entrada = 4'b0001;
#10;
entrada = 4'b0010;
#10;

\

En este bloque initial
— sefijan los valores de
las entradas y se
establece el final de la
simulacion.

Instituto de

Resultado de la simulacion e

* El simulador nos muestra entradas y salidas para los casos probados:
0000,0001,0010,0011,0100,1000,1010,0111

* (Cada valor se mantiene durante 10ns (ver mas adelante unidades)
* Lasalida nos muestra en cada caso el cddigo de la entrada mas prioritaria que valga 1.
* El bus de entrada ha sido desplegado para apreciar mejor las entradas

* El bus de salida se muestra en base 10

Value 0.000 ns 10,008 ns 20.000 ns 30.000 ns 40,000 ns 50.000 ns 60.000 ns 70.000 ns
¥ entrada[3:0]] |7 / g 4 h{ ' : § : } & 8 1 a
e [3]

s [2]

s [1]
s [0]

> W salida[1:0]

Organizacion de un testbench

Otra opcion para
la organizacion
del testbench

En este bloque

initial solo se

proporciona el \
valor inicial de las

entradas y se

establece el final
de la simulacion

Estructura de Computadores — P

module tb_codificador_de_prioridad;

reg [3:0] entrada;
wire [1:0] salida;
wire e;

codificador_de_prioridad dut (
.entrada(entrada),
.salida(salida),
.e(e)

);

initial begin

Sdumpfile("codificador_de_prioridad.vcd");
Sdumpvars(0, tb_codificador_de_prioridad);

end

initial begin
entrada = 4’b0000;
#160;
Sfinish;

end

always begin

#10;

entrada = entrada + 1'b1;
end
endmodule

Instituto de
Microelectrénica
de Sevilla

En este bloque always
se cubren todas las
posibilidades de
entrada.

77

Resultado de la simulacion

El simulador nos muestra entradas y salidas para todos los casos posibles de entrada (son 16):
0000,0001,0010, ..., 1101,1110,11112

* Cadavalor se mantiene durante 10ns (ver mas adelante unidades)
* Lasalida nos muestra en cada caso el cédigo de la entrada mas prioritaria que valga 1.
* El bus de entrada ha sido desplegado para apreciar mejor las entradas

e El bus de salida se muestra en base 10

Name Value 0.000 ns 20.000 ns 40.000 ns 60.000 ns 80.000 ns 100.000 ns 120.000 ns 140.000 ns
W entrada[3:0]
¢ [3]
e [2]

s [1]

g ¥ 1 Y 2 ¥ 3 ¥ 4 ¥ 5 Y 6 V8 Y 9 ¥ a

a G e

« [0]

W salida[1:0]

W = = = = Th

o

Unidades de tiempo e (5 s

* Eltiempo se puede expresar con el simbolo # seguido de un
valor numérico entero o en punto fijo seguido (sin espacio) por
una unidad de tiempo (fs ps ns us ms s)

— Ejemplo: #10ns

e Existe una directiva timescale que fija las unidades de tiempo
y la precision en la simulacion

— Sintaxis: ‘timescale unidad/precision
* Ejemplo: ‘timescale 1ns/100ps (usar 1, 10, 100)

 Sial expresar el tiempo no se incluyen unidades se entiende
gue se usa la indicada en la directiva timescale

— El simulador redondea las cantidades a la precision establecida.

Instituto de

Salida por pantalla it

 Se puede imprimir informacion durante la simulacion
mediante las funciones Sdisplay y Smonitor. Ambas escriben
con formato.

* Sdisplay imprime el mensaje una sola vez: en el punto donde
se incluye.

— Ejemplo:
« Sdisplay ("Valor de la sefial A = %0d", A);

* Smonitor se escribe una sola vez, pero imprime el mensaje
cada vez que cambia alguna de las variables incluidas en su
lista.

— Ejemplo:
* Smonitor ("Tiempo: %0d , A =%0d , B = %0d", Stime, A, B);

Salida por pantalla: Sdisplay, ejemplo 'MSrE

‘timescale 1ns/1ns «—— | Incluimos la directiva ‘timescale para fijar
module tb_codificador_de_prioridad; las unidades de tiempo y la precisidon
initial begin
entrada = 4'b0000;
Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", $time, entrada, salida, e); | Tie€mpo 10: entrada = 0000, salida=00, e =1
#10; Tiempo 20: entrada = 0001, salida=00,e =0
entrada = 4'b0001; Tiempo 30: entrada = 0010, salida=01,e=0
Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e); Tiempo 40: entrada = 0011, salida=01,e=0
#10; Tiempo 50: entrada = 0100, salida=10,e=0
entrada = 4'b0010; Tiempo 60: entrada = 1000, salida=11,e=0
Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e); Tiempo 70: entrada = 1010, salida=11,e=0
#10; Tiempo 80: entrada = 0111, salida=10,e=0
entrada = 4'b0011; . _ _ testbench.sv:66: Sfinish called at 80 (1ns)
Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e);
#10; A

entrada = 4'b0100;

Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e);
#10;

entrada = 4'b1000;

Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e);

#10; - La salida por pantalla
entrada = 4'b1010; \ muestra los resultados
Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e); con el formato solicitado
entrada = 4'b0111;

#10; en el testbench

Sdisplay("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e);

Salida por pantalla: Smonitor, ejemplo '.“c“nsnﬁ

‘timescale 1ns/1ns
module tb_codificador_de_prioridad;

initial begin

Smonitor ("Tiempo %0d: entrada = %b, salida = %b, e = %b", Stime, entrada, salida, e);

entrada = 4'b0000;
#10;
entrada = 4'b0001;
#10;
entrada = 4'b0010;
#10;
entrada = 4'b0011;
#10;
entrada = 4'b0100;
#10;
entrada = 4'b1000;
#10;
entrada = 4’b1010;
#10;

Tiempo 10:
Tiempo 20:
Tiempo 30:
Tiempo 40:
Tiempo 50:
Tiempo 60:
Tiempo 70:
Tiempo 80:
testbench.sv:26: Sfinish called at 80 (1ns)

entrada = 0000, salida =00, e
entrada = 0001, salida =00, e
entrada = 0010, salida=01, e
entrada = 0011, salida=01,e=0
entrada = 0100, salida=10,e=0
entrada = 1000, salida=11,e=0
entrada = 1010, salida=11,e=0
entrada =0111, salida=10,e=0

1
0
0

entrada =4’b0111;

Con una unica linea
conseguimos el mismo
efecto

Instituto de
Microelectrénica
de Sevilla

Instituto de

Simulacién (ejemplo 1) e

module test_repeat_loop;
reg clk,rst;

e Contador modulo 256y

testbench . wire [7:0] count; La organizacion es la ya vista:
- creacion de un maodulo,
simple_counter uut (- declaracién de sefiales,
module simple_counter (.clk (clk), - instanciacién y conexion
input wire clk, rst rst (rst), del modulo a probar
.count (count));
output reg [7:0] count);
always begin
always @(posedge clk or posedge rst) y#5 ﬁ(= ~clk:
. ClK="CIK; «— generacidn de la sefial de reloj
begin end
if (rst) _— .
count <= 8'd0: initial begin generacién de estimulos
’ clk=0;
else rst=1;
count <= count + 1; #12;
end rst = 0;
endmodule repeat (20) @(posedge clk);

Sfinish; '\
end con esta linea esperamos

endmodule 20 ciclos de reloj

Estructura de Computadores — Pilar Parra 83

Instituto de

Resultado de la simulacion e

* Elsimulador muestra las entradas: clk y rst y la salida de 8 bits del contador count

* Elrelojes de periodo 10 tal y como se ha definido.

* Enlasalida se puede apreciar el reset inicial, y durante 20 ciclos de reloj la
evolucion del estado del contador en decimal: 0->19

\'ZIT e 0. 000 ns §0.000 s ,100.000 150.000 ns 200

1 1 17 FL 1 L1 1 L1 1
0

f 0 S{ 1Y 2 ;‘ 3 Y 4 Y & " 6 \{ 7Y 8 } 9 \< 10 Y 11)’ 12 ‘;{ 13 Y 14 Y 15)< 16 Y 17 Y 18 ‘1

0

Instituto de

Simulacion (ejemplo I1) e

e Contador modulo 8 con

module test_counter; initial begin
aCarreo:
reg clk,rst; clk=0;
wire [2:0] count; rst=1;
module mod8_counter (_
: : wire cy; #15;
input wire clk, rst,
output reg [2:0] count, mod8_counter uut (rst=0; o ik
output reg cy); clk (clk), repeat (10) @(negedge clk);
rst=1;
.rst (rst),
always@(posedge clk or posedge rst) count (count) @(negedge clk);
begin _ ’ rst=0;
. .cy(cy));
if (rst) repeat(5) @(posedge clk)
count <= 3'd0; always begin Sfinish:
else #5 clk = ~clk; end
count <= count + 1; end endmodule
end
assign cy = (count ==3'b111);
\/
endmodule :
Podemos usar referencias
a ambos flancos de reloj

Estructura de Computadores — Pilar Parra 85

Resultado de la simulacion

* Elsimulador muestra las entradas clk y rst y las salidas: los 3 bits del
contador (count) y la salida de carry (cy)

 Enlasalida se aprecian:

— el reset inicial y el ciclo completo de cuenta
— la activacion de la salida de carry en el estado 7 (Ultimo estado de cuenta)

— otro reset que lleva al contador de nuevo al valor inicial (0)

 Esimportante destacar que el reset se produce de forma asincrona, sin
necesidad de esperar a la sefial de reloj, haciendo que el estado 2 no

dure un ciclo de reloj.

— Esto es debido a que dicha sefial se ha incluido en |a lista de sensibilidad del
always al definir el modulo.

Name Value z0.000 ns 40.000 ns
¢ Cclk

e rst

W' count[2:0]

e Cy

Resultado de la simulacion

* Sise desea que la sefial de reset sea sincrona basta con excluirla de la
lista de sensibilidad.

* Larespuesta en este caso es:

Name Value Z0.000 ns 40.000 ns &60.000 ns 20.000 ns 100.000 ns 120.

s 4 6 4 7 4 0 ¥ 1 h { z ';, 0

Cclk
s rst
» W count[2:0]

& Cy
Con always @(posedge clk) /
rst es sincrona Con always @(posedge clk or posedge rst)
/ rst es asincrona
Name Value 0.000 ns Z0.000 ns 40.000 ns [S0.000 ns

¢ Clk

e rst

HHHH (P

e RS

W' count[2:0]

s Cy

SID4
Q7 &

N

=
>

& = Simulacion(ejemplo Ill): registro universal '.“c”nsn'%'ﬁjér‘ééﬁe‘.’;?%mca

Bl

* Elregistro universal puede realizar todas las operaciones:

— desplazamiento a derecha e izquierda,
Recordamos

— carga en paralelo (operacién de escritura) ,
el modulo

— inhibicidn (guardar el dato)
— puestaa O

serial in left data_in[7:0] serial_in_right
- | — op[1:0] | operacion

00 inhibicion

op[1:0] = reg_univ[8] 01 | shiftleft
rst — A 10 shift right

| | 11 escritura

clk data_out[7:0]

Instituto de

Simulacidon(ejemplo lll) e

module reg_univ #(parameter WIDTH = 8)(

input wire clk, rst,
input wire [1:0] op,
input wire serial_in_left, serial_in_left data_in[7:0] serial_in_right

input wire serial_in_right, |

input wire [WIDTH-1:0] data_in,
output reg [WIDTH-1:0] data_out op[1:0] — reg_univ[8]
) rst — A
always @(posedge clk, posedge rst) begin | |
if (rst) clk data_out[7:0]
data_out <= ‘0;
else
case (op) Recordamos
2'b00: data_out <= data_out; ,
el médulo
2'b01: data_out <= {data_out[WIDTH-2:0], serial_in_right};
2'b10: data_out <= {serial_in_left, data_out [WIDTH-1:1]};
2'b11: data_out <=data_in;
default: data_out <= ‘0; begin
endcase data_out <= data_out<<1;
end data_out[0] <= serial_in right
endmodule end

Simulacion(ejemplo i)

IMSE Instituto de
Microelectrénica
-cnm de Sevilla

module tb_reg_univ;
parameter WIDTH = §;

reg clk;

reg rst;

reg [1:0] op;

reg serial_in_left;

reg serial_in_right;

reg [WIDTH-1:0] data_in;
wire [WIDTH-1:0] data_out;

reg_univ #(.WIDTH(WIDTH)) dut (
.clk(clk),
.rst(rst),
.op(op),
.serial_in_left(serial_in_left),
.serial_in_right(serial_in_right),
.data_in(data_in),
.data_out(data_out)

);

initial begin
clk =0;
forever #5 clk = ~clk;
end

initial begin
Sdumpfile ("dump.vcd");
Sdumpvars (0, tb_reg_univ);
end

initial begin
rst=1;
op = 2'b00;
data_in='0;
serial_in_left = 0;
serial_in_right = 0;

#10;
rst = 0; //desactiva reset

@(posedge clk);
op=2'bl1; // carga en paralelo
data_in = 8'hA5; // Valor de prueba
@(posedge clk);

@(posedge clk);

op =2'b00; //inhibicién

data_in = 8'hFF; // data_in no afecta
@(posedge clk);

serial_in_left

data_in[7:0] serial_in_right

op[1:0]— reg_univ[8]
St A
clk data_out[7:0]
@(posedge clk);
op = 2'b01; // Shift left
serial_in_right =1; //Bit que entra
@(posedge clk);
@(posedge clk);
op =2'b10; // Shift right
serial_in_left=1; //Bit que entra
@(posedge clk);
// Finalizacién de la simulacion
#20;
Sfinish;
end
endmodule

+ Test del registro universal: resultado 'M%E

Reset inicial Carga Inhibicion Left Right

. Am-r
.l-lr_ R

7

Name Value

® rst

e

e serial_in_righf 1

> W op[1:0]

¢ [serial_in_left

W data_in[7:0]f 11111111

‘\ 00000000 X 10100101 11111111
I‘r 1 S

> W data_out[7:(J 11110010} 00000000 Y 10100101 | 01001011 }\ 10010111 }¥11001011 M 11100101 | 11110010

op[1:0] | operacion
00 inhibicién
01 shift left

10 shift right
11 escritura

