Tema 2

Sistemas Digitales

Contenidos del tema

» El nivel RT

» Diseilo de la unidad de datos

» Interconexiéon mediante buses

» Ejemplo: disefio de una calculadora simple
» Disefio de la unidad de control:

» Descripcion mediante cartas ASM

» Descripcion mediante Verilog

» Otros ejemplos

Nivel RT: circuitos versus sistemas

x1—

xn—IP*

—»

Circuito

Combinacional

_>'Z1
_>'Zk

yr

[

reloj

»

CIRCUITOS

0,1

De conmutacion

Maquina de estados finitos

Puertas y biestables

Lineas (cables)

Combinacional y
almacenamiento (memoria)

Informacion

Nivel/Lenguaje

Funcionalidad

Componentes

Conexion

Organizacion

SISTEMAS

Palabras de datos

RT (Register Transfer)

Instrucciones:
Operaciones

MUX, ALU, ..., registros,...

Buses

Procesado de datos y
control

XN) 7
o Unidad de ouT
Control g
loi
relo XT 4, 7
Unidad de
i Procesado ™F >
Din Dour

X : cualificadores o entradas de control
Z : comandos o salidas de control

D: datos

disparados por el mismo flanco de la misma sefnal de relo;j.

» Con frecuencia omitiremos la representacion de la sefial de reloj.

» Los sistemas que trataremos seran sincronos y sus biestables seran todos

u DT

Nivel RT: Descripcion de componentes

» Registro: unidad bdsica de almacenamiento de datos

> Representacion
estructural

> Representacion

funcional
n
U Control Operacion a
— St DIN S]_ Sz ----Sm Nivel RT
A[n] 00..0 A < D)y
7| 5m ck 00..1
Dour A& O
11..1 otras

Nivel RT: Ejemplos de operacion

» De escritura » De lectura
(secuencial) (combinacional)
Notacién RT Notacién RT
Carga en paralelo A & D)y Lect. incondicional Dout = [A]
Despl. a izquierda A & SHL(A,D) Lect. condicional R: Dout = [A]
Despl. a derecha A & SHR(A,Dg) B .
Incremento A& A+1 Funcién del dato Z=1 si [A]=0
Decremento A&EA-1
Puestaa 0 A& O
Puestaal A& 1.1
NOP/Inhibicién A& A

Nivel RT: Ejemplos de descripcion

» Registro universal de n bits

> Representacion > Representacion
estructural funcional
Dr, D,
l Un l
—Ss, . Din S1 S0 A & Dour =
—ls,© Aln] 00 A& A
—>lck D 01 A& D
OouUT IN
n 10 A & SHR(A,Dg) Dour=[Al
11 A & SHL(A,D,)

Nivel RT: Ejemplos de descripcion
» Memoria RAM comercial: RAM 2114

> Representacion > Representacion
estructural funcional
——>{Ago. CS’ R/W’ RAM & Ds.0=
| D3£ ‘eA'_) 1- RAM &~ RAM HI
___Ics 01 RAM & RAM [RAM(A)]
_ RW 00 RAM(A) <& D, D3

Nivel RT: Operaciones entre varios registros

» Ejemplos:

X;:A&<B

Nivel RT: Estructura general del sistema digital

» Generalizacion: f(x): A & G(B, C, ...)

Nivel RT: Macro y micro -operaciones

» Macrooperacidn (o instruccidn):

» Es cada tarea que especifica el usuario y que el sistema realiza
automaticamente

¥ En general, el sistema emplea varios ciclos en su ejecucion.
¥ Launidad de control “dirige/supervisa” la tarea realizada

» Microoperacién (nop):
» Escada tarea gue el sistema realiza en un unico ciclo de reloj

¥ En general, consiste en una o varias transferencias entre registros

DT :

Nivel RT: Ejecucion de una pop

Ciclo K
f(x): A< G(B, C, ...)

Ck

N

Ciclo K

Vv

f(x):

. /
Wi =

4

salB: — HI ~—X_B, X HI
Sal G: 27? ~—XG@B,, Cp,..) X 222
A: A() X G(BO, Co, ...)

11

Componentes de la Unidad de Datos

entradas

d

/registros

A

N

Bloque
de
interconexion

v(unidadeS funcionales \

¥

salidas

12

Bloque de interconexion: buses

» Bus:
en un sistema digital, un bus es un conjunto de n
lineas ordenadas que discurren en paralelo y
transportan informacioén (palabras)

13

Bloque de interconexion: buses

» Tipos de salida: » Tipos de interconexién:
Estandar (0,1) Unidireccional Dedicados
Fuente
Destino
Triestado (0,1, HI) Bidireccional Compartidos
Fu/De
De/Fu

DT X

Bloque de interconexion: ejemplo

» Se dispone de 4 registros A;,A,,A;,A, con carga en paralelo.

» Hay que realizar la conexion para la transferencia
A< ApconED€e{0,1,2,3}

» Seleccion de fuente: F,F,
» Seleccién de destino: DD,

DT s

Bloque de interconexion: ejemplo

» Caso 1: registros con salida y entrada separadas

» Caso 2: registros con salida y entrada separadas,
salida triestado

» Caso 3: registros con un tnico bus bidireccional de
salida y entrada

y

F

16

Bloque de interconexion: ejemplo

» Caso 1: registros con salida y entrada separadas

~5C Ejemplo: A; < Ay
0 Dl—bl 2:4 ; AD=A1
1 Dy—o (1) AF=A3; F1F0=1 1

Solucion
multiplexada

17

Bloque de interconexion: ejemplo

» Caso 2: registros con salida y entrada separadas,
salida triestado

DEC Ejemplo: A; < Ay
2:4

18

Bloque de interconexion: ejemplo

» Caso 3: registros con un tnico bus bidireccional de
salida y entrada

lz)Ef Ejemplo: A; < A,
4 3

0 Di—yf;

S =N

1 DO—D'O

()
=
<
[—}
vy
=
<1H>
S S
= =
<1N>
EE =
=
T
W

R N

PN =D

Fo —{0

Diseno de un sistema digital

» Metodologia

» Paso 1: Comprender claramente las especificaciones del sistema a
disenar y definir el conjunto de instrucciones/operaciones.
Los registros que aparecen en la descripcion de las macrooperaciones
son los registros visibles.

» Paso 2: Proponer una unidad de datos capaz de ejecutar todas las
operaciones especificadas. Debe incluir los registros visibles.

» Paso 3: Describir todos los componentes a nivel RT estructural y
funcional.

¥ Paso 4: Descomponer las macrooperaciones en microoperaciones
para la arquitectura propuesta.

» Paso 5: Desarrollar la unidad de control

u DT ?0

Diseino de una calculadora simple

» Paso 1- Especificaciones del sistema a disefiar:

» Sedispone de 2 registros, Ay By se desea poder realizar cualquiera
de las siguientes operaciones:

operacion

00 A<A+B Iy
01 B—<A+B
10 A<A-B
11 B<A-B

» Sehan asignado los codigos de modo que el registro destino se
identifica con I, y la operacién con I;.

DT 1

Diseno de la unidad de datos de una
calculadora

» Paso 2 - Proponemos una arquitectura genérica de un bus
capaz de ejecutar las operaciones especificadas.

V DAT A

E:u| ==
&

vDAT B

22

Diseno de la unidad de datos de una

calculadora
» Paso 3 - Describimos los componentes a nivel RT
g e i e our- |
Y ¥ — T
RT oy W/~ 0 RT [RT] R voyrAC 01 AC [AC]
1 IN [RT] 10 IN HI
N A 11 N ac
/4_>VDAT X w_ \ \

00
01
10

X HI
DAT DAT
X [X]
Proh proh

_/

00 IA +1B
01 IA
10 IA -IB
11 IB

_/

23

Descripcion Verilog de los componentes

//declaracion del modulo correspondiente a RT

module RT #(parameter W=8)(
input wire Wt,
input wire ck,
input wire [W-1:0] IN, e

output wire [W-1:0] OUT N
}
reg [W-1:0] q; IN
always@(posedge ck) RT our W[0 RT [RT]
if(Wt) * 1 IN [RT]
q<=IN; _ /

assign OUT =q;
endmodule

//declaracion del modulo correspondiente a AC

module AC #(parameter W=8)(
input wire Wac, f

input wire Rac, _ — \
B L WR
input wirfa [W-1:0] IN, . o 00 AC HI
. output wire [W-1:0] OUT _‘I/{V VOUTAC 01 AC [AC]
reg [W-1:0] q; ‘ 10 IN HI
always@(posedge ck) 11 IN [AC]

if(WE:::<)=1N ; \ /

assign OUT = Rac? q: 'bz;
endmodule

u DT #

Descripcion Verilog de los componentes

//declaracion del modulo X correspondientea Ay B

module X #(parameter W=S8, initial_value= 0)(
input wire Wx,
input wire RX,
input wire ck,
inout wire [W-1:0] INOUT
)
reg [W-1:0] q;
always@(posedge ck)
begin
q<=initial_value;
if(Wx)
q<=INOUT;
end
assign INOUT = Rx&vWx ? q: 'bz;
endmodule

—)

/4_>VDAT X wl=

00 X HI
01 DAT DAT
10 X [X]
11 Proh proh

o /

//declaracion del modulo correspondiente a la ALU

module ALU #(parameter W=8)(

input wire C1,

input wire CO,

input wire [W-1:0] IA,
input wire [W-1:0] 1B,
output reg [W-1:0] OUT);

-

always@(*)
case({C1,C0})
2'b00: OUT=IA+I1B;
2'b01: OUT=IA;
2'b10: OUT=IA-IB;
2'b11: OUT=IB;

\

00 IA +1B
01 IA
10 IA -IB
11 IB

/

endcase
endmodule

25

Descripcion Verilog de la unidad de datos

//descripcion de la unidad de procesado de datos

module unidad_datos #(parameter W=S, initial_A=8'd 0, initial_B=8'd 1)(

input wire ck,
input wire Wac,
input wire Rac,

input wire Wt,
input wire Ra,
input wire Wa,

input wire Rb, R

input wire Wb, voar A wl— W
input wire PO, P R,
input wire P1, Py VDAT Bty

output wire [W-1:0] rega,
output wire [W-1:0] regb

); * <« ALU_out
wire [W-1:0] common_bus, ALU_out, RT_ou \[/{VAC_W 1 knmon_bus

RT #(.W(W)) RT_insta (Q e /
JWt(Wt), Y\
.ck(ck), N
.IN(common_bus),
.OUT(RT_out)); Se han nombrado los buses

AC #(.W(W)) AC_insta(internos de la unidad:
.Wac(Wac), RT_out, ALU_out y common_bus
.Rac(Rac),
.ck(ck),

.IN(ALU_out),
.OUT(common_bus));

u DT 20

Descripcion Verilog de la unidad de datos

//continuacion de la descripcion de la unidad de procesado de datos

X #(.W(W),.initial_value(initial_A)) A_insta(

.Wx(Wa),

.Rx(Ra),

.ck(ck),
JINOUT(common_bus));

X #(.W(W),.initial_value(initial_B)) B_insta(
Wx(Wb), voar A v§
.Rx(Rb), Py R
.ck(ck), P, vDAT B w

.INOUT(common_bus));

ALU #(.W(W)) ALU_insta(‘ & ALU_out

.C1(P1), ~
.CO(PO), \é\i‘z‘::\é\; é%om common_bus
.JA(common_bus), K
.IB(RT_out),
.OUT(ALU_out));
assign rega=Ra?common_bus : 'bz; Se han nombrado los buses
assign regb=Rb?common_bus : 'bz; internos de la unidad:

RT_out, ALU_out y common_bus
endmodule

Descomposicion en microoperaciones

» Paso 4 -Descomponemos las macrooperaciones en
microoperaciones.

» Durante la ejecucién de una macrooperacién pueden modificarse
los registros ocultos y solo los registros visibles que aparezcan
como destino en la descripcion de la macrooperacion.

A<A+B B—<A+B |A<A-B |B<A-B
uop 1 RT < B
Luop 2 AC <A +RT AC < A-RT
uop 3 A« AC B « AC A« AC B « AC

DT s

Descripcion mediante cartas ASM

» Definiciones

/ CAJA DE ESTADO \

camino de
entrada
simbolo
Q)estado
camino de
salida

-

/ CAJA DE DECISION

camino de entrada

valor

1 2

camino camino
de de
salida salida

~

valor
n

camino

de
salicy

.

-

CAJA DE ACCION
CONDICIONAL

camino de
entrada

)

camino de
salida

~

/

29

Descripcion mediante cartas ASM

» Definiciones

unay solo una
/ BLOQUE ASM cajade estadox

/ CARTA ASM

grafo orientado
y cerrado que
interconecta
bloques ASM

-

~

/

30

Errores comunes en cartas ASM

' o hYd ™
P_T'Elmﬂ E-"ftﬂﬂﬂ Cerrar lazos sin | /7~ ™
sin determinar cajas de estado No garantizar la posibilidad logica
I de todos los caminos
4 A
W A
I — Lt
B C
B
A A \L
o 1 ?ﬁ}
Btan’al i
B c D 9 !
. B e v
A AN vy
31

Consideraciones temporales

» El orden de las cajas en un bloque ASM
no implica orden temporal.

» Todas las tareas de un bloque ASM se hacen en un
ciclo de reloj

» Igual significado légico

u DT

32

Descripcion mediante cartas ASM

» Inicio y fin de operacién

estado inicial (NOP)

So /
0 Xs: entrada con la que se
inicia la operacion (Xstart)
1

cuerpo de FIN: salida que indica que la
la carta ASM operacion ha terminado

estado de fin
Sk \/

33

Diseio de la calculadora simple

» Organizacién del sistema digital:

[11pXs

» El usuario especifica la
operacién proporcionando el
valor de I; I, y generala
orden de comienzo con X

FIN

34

Carta ASM de la calculadora

A<A+B B<A+B A<A-B B<A-B
1110=00 1110=01 1110=10 1110=11
RT < B
AC < A+ RT AC < A-RT
A« AC B « AC A« AC B « AC

unidad
de
datos

[11pXs

1

AC « A-RT

Carta ASM de la calculadora

C < A-RT

SO
0
1
Sq RT < B
\
S,
unidad
de 0 I, 1
datos C « A+RT
%
S3

unidad
de
control

WAC ,Ra

Descripcion Verilog de 1a u. de control de la
calculadora

» La descripcién canénica de maquinas de estado en HDL
Verilog es un proceso sistematico

» Se utilizara una estructura general del cédigo en la que hay 2
procesos

» Uno de asignacién de siguientes estados

» Otro de calculo de siguiente estado y salidas

DT o

Descripcion Verilog de la u. de control de la
calculadora, estructura general.

module mi carta asm(
input LISTA DE ENTRADAS (incluyendo clk y reset),

output reg LISTA DE SALIDAS);

// DEFINICION Y ASIGNACION DE ESTADOS
parameter LISTA DE ESTADOS

// VARIABLES PARA ALMACENAR EL ESTADO PRESENTE Y SIGUIENTE
reg [N:0] current state, next state;

// PROCESO DE CAMBIO DE ESTADO
always (@ (posedge ck or posedge reset)

// PROCESO SIGUIENTE ESTADO Y SALIDA
always @ (current state, LISTA DE ENTRADAS)

endmodule

u DT 30

Descripcion Verilog de 1a u. de control de la
calculadora, procedimiento.

En la estructura general hay que completar 4 partes de codigo:

1. Definiciony asignacion de estados, segun el numero de estados
utilizaremos mas o menos bits.

2. Definicion de registros para almacenar el estado actual y el siguiente.
Deben ser del mismo tamaifo en bits que el utilizado en el punto
anterior.

3. Proceso de cambio de estado: siempre es el mismo codigo

4. Proceso de calculo de siguiente estado y salida: Hay que rellenar el
codigo correspondiente a la carta ASM

u DT 3

Descripcion Verilog de 1a u. de
control de la calculadora

module unidad_control(
input ck, XS, 10, 11, reset,
output reg RAC, Rb, Ra, WRT, WAC, Wa, Wb, P1, PO, FIN

); —~

parameter SO = 3'b000,
i __ Asignacién
$3=3'b011, de estados
SF=3'b100;

reg [2:0] current_state,next_state;

always @(posedge ck or posedge reset)

begin
if(reset)
current_state <= SO; Proceso
el — siguiente
current_state <= next_state;
end estado

SIGUE ->

So
0
1
S1 WroRy,
\
S2 | WyR,
0

40

Descripcion Verilog de 1a u. de
control de la calculadora

» El proceso de calculo del siguiente estado y
salida se realiza con una Unica sentencia
“CASE”

» La sentencia “CASE” debe contemplar todos
los estados de la carta ASM

» Antes de la sentencia “CASE” se recomienda
establecer por defecto a cero todas las salidas
y next_state a SO

So
0
1
S1 WroRy,
\4
52 | WiR,
0 1
v
53 Ruc

u DT

41

Descripcion Verilog de 1a u. de
control de la calculadora

always @(current_state,l0,11,XS)

begin

RAC = 0; —
WAC = 0;

Ra = 0;

Rb = 0;

PO = 0;

P1 = 0;

WRT = 0;

Wa = 0;

Wb = 0;

Valor por defecto de las salidas

— .
establecido a cero

Valor por defecto

FIN = 0;
next_state = SO; / del estado: SO

case(current_state)
SO:

S1:
begin
WRT = 1;
Rb = 1;
next_state = S2;
end

if(XS) next_state = S1; — Estado SO

— Estado S1

DT

42

Descripcion Verilog de 1a u. de
control de la calculadora

S2:
begin
WAC = 1;
Ra = 1;
if(11)
P1 =1;
next_state = S3;
end
$3:
begin
RAC = 1;
if(10)
Wb = 1;
else
Wa = 1;
next_state = SF;
end
SF:
FIN = 1;
endcase
end
endmodule

J\

J |

— Estado S2

— Estado S3

. Estado SF

S1 WroRy,
\4
52 | WiR,
0 1
Py
\\l/<
53 Ruc

43

Diseio de la calculadora simple

» Conexién de unidades de datos y de control:
Iy To X

FIN
module calculadora # (parameter N=8) (inputck, XS, 10, 11, reset, output FIN);

wire wl,w2,w3,w4,w5,w6,w7,w8,w9;

unidad_datos #(N) ud_calc (.ck(ck),.WAC(w1),.RAC(w2),.WRT(w3),
.Ra(w4),.Rb(w5),.Wa(w6),.Wb(w?7),.PO(w8),.P1(w9));

unidad_control uc_calc(.ck(ck),.reset(reset),.XS(XS), .FIN(FIN),.10(10),.11(11),
.WAC(w1),.RAC(w2),.WRT(w3),.Ra(w4),.Rb(w5),
.Wa(w6),.Wb(w?7),.PO(w8),.P1(w9));
endmodule

DT

44

Diseno de la unidad de datos de una
calculadora: solucion con 3 buses

» Para las mismas especificaciones del ejemplo anterior
proponemos una unidad de datos diferente.

¥ Arquitectura especifica.

» Con esta arquitectura se
necesitan menos registros.

4 I
4
X or W— 0 X [X]
1 IN [X]
N v)

Descripcion Verilog de 1a u. datos de la
calculadora : solucion con 3 buses

//declaracion del tipo modulo correspondiente a RA y RB

module typel #(parameter N=8)
(input W, ck, input [N-1:0] IN,
output reg [N-1:0] OUT);
always@(posedge ck)
if(W)
OUT<=IN;
endmodule

//declaracion del tipo moédulo correspondiente a la ALU

module ALU_type #(parameter N=8)
(input C1, CO, input [N-1:0] IA,IB,
output reg [N-1:0] OUT);
always@(*)
case({C1,C0})
2'b00: OUT=IA+IB;
2'b01: OUT=IA;
2'b10: OUT=IA-IB;
2'b11: OUT=1IB;
endcase
endmodule

Descripcion Verilog de 1a u. datos de la
calculadora : solucion con 3 buses

typel

//declaracion de la unidad de procesado de datos

module unidad_datos2 #(parameter N=8)

(input ck,Wa,Wb,P0,P1);
wire [N-1:0] ALU_out, OUT_A, OUT_B;
OUT B typel #(N) A(Wa,ck,ALU_out,OUT_A);

typel #(N) B(Wb,ck,ALU_out,OUT_B);
ALU_type #(N) ALU(P1,P0,0UT_A,OUT_B,ALU_out);

endmodule

ALU_TYPE

47

Carta ASM: solucion con 3 buses

» Las macrooperaciones se
realizan en un unico ciclo
de reloj.

W— w,

I, 1 operacion
1 1o

00 A<A+B
01 B—~A+B
10 A<A-B
11 B<A-B

48

Carta ASM: solucion con 3 buses

unidad
de
datos

unidad
de
control

49

Descripcion Verilog de la u. de control de la

calculadora: solucion con 3 buses

module unidad_control2(
input ck, XS, IO, I1, reset,
output reg Wa, Wb, P1, PO, FIN
)
parameter SO = 2'b00,
S1 = 2'b01,
SF = 2'b10;

reg [1:0] current_state, next_state;

always @(posedge ck or posedge reset)
begin
if(reset)
current_state <= SO;
else
current_state <= next_state;
end

SIGUE ->

50

Descripcion Verilog de la u. de control de la
calculadora: solucion con 3 buses

always @(current_state,l0,11,XS)
begin
P1 =0;
PO =0;
Wa =0;
Wb =0;
FIN = 0;

next_state = SO;
case(current_state)
>0: 00 11
if (XS) next_state = S1; >
SIGUE ->

51

Descripcion Verilog de la u. de control de la

S1:
begin
if(I1==0 && I0==0)
Wa=1;
else if(I1==0 && I0==1)
Wb = 1;
else if(I1==1 && I0==0)
begin
P1=1;
Wa = 1;
end
else
begin
P1=1;
Wb = 1;
end
next_state = SF;
end
SF:
FIN = 1;
endcase
end
endmodule

calculadora: solucion con 3 buses

DT

52

Descripcion Verilog (compacta) de la u. de
control de la calculadora: solucion con 3
buses

module unidad_control 2(
input d¢ XS I0 I, reset, 0
t;tlput reg PQ,P1,Wa Wh,FIN

parameter S0 =2'b00, 1

S1=2b01,
S =2b10;

reg [1:0] arrent_state,next_state;

a;\é\;vs@(posedge&orposedgeresd)
n

if(reset)

arrent_state <<90;

glea

asrent_state <=next_state;
end

SIGUE->

DT &

Descripcion Verilog (compacta) ...

d\nays@(an'elt_slae,nll,)S)

54

Diseno de la calculadora simple:

solucion con 3 buses

» Conexion de unidades de datos y de control:
I, I Xs

FIN

module calculadora # (parameter N=8) (inputck, XS, 10, 11, reset, output FIN);
wire wl,w2,w3,w4;
unidad_datos2 #(N) ud_calc (.ck(ck),.P1(w1),.PO(w2),.Wa(w3),.Wbh(w4));
unidad_control2 uc_calc(.ck(ck),.reset(reset),.XS(XS),.FIN(FIN),.10(10),.11(11),

.P1(w1),.P0(w2),.Wa(w3),.Wb(w4));
endmodule

55

Diseno de una calculadora con 16 registros
» Especificaciones del sistema a disefiar:

» Se dispone de 16 registros (Ry, Ry, .., Ris) y se desea poder realizar
cualquiera de las siguientes operaciones:

000 Rp« Rg +Rg
001 Rp«<Rg-Rg
010 Rp«Rgi®@Rg,
011 Rp « Rg; or Rg,
100 Rp« Rg;and R,
101 Rp« Rg; <<Rqg,
110 Rp« Rg;>>Rq,

» D,S1,S2 €{0,1,2,..,14,15}
» D, S1y S2 vienen determinados por SDs.g, SS13.9, SS24.

u DT

Diseno de una calculadora con 16 registros

» Arquitectura de la u. de datos:

W

rsil

SS15,

rs2

SS25,4

alu_out

57

Descripcion de la nueva ALU

//declaracion del moédulo correspondiente a la ALU

module ALU #(parameter N=32)(
input wire [3:0] C,
input wire [N-1:0] S1,
input wire [N-1:0] S2,
output reg [N-1:0] OUT);

always@(*)
case(C)

2'b0000:
2’'b0001:
2'b0010:
2'b0011:
2'b0100:
2'b0101:
2'b0110:
2'b0111:
2’'b1000:

endcase
endmodule

OoOuUT=S1+S2;
OUT=S1-S2;
ouT=S2;
OoOuUT=S1/S2;
OUT=S1 | S2;
OUT=S1 & S2;
ouUT=S1<<S2;
OoOuUT=S1>>S2;
OoOuUT=S1>>>S2;

>

0000
0001
0010
0011
0100
0101
0110
0111

1000

S1+S2
S1-S2

S2

S1 xor S2
S1 or S2
S1 and S2
S1<<S2
S1>>S2

S1>>>S2 ////

58

Diseno de una calculadora con 16 registros
Descripcion Verilog de la unidad de procesado

/ /declaracion de la unidad de procesado de datos

module unidad_datos3 #(parameter N=32) (input ck,W,input [3:0] P,
input [3:0] SD,SS1,SS2);

wire [31:0] rsl1, rs2; // salida de los MUX
wire [31:0] alu_out; // salida de la ALU
reg [31:0] R[0:15]; // banco de registros

assign rs1l = R[SS1];
assign rs2 = R[SS2];

always @(posedge clk)
if(W)
R[SD] <= alu_out;

alu #(.W(32)) alu (
.s1(rs1),
.s2(rs2),
-C(P),
.out(alu_out),

)

endmodule

DT

59

Diseinno de una calculadora con 16 registros

» Organizacién del sistema digital:

LIy Xs SD3. SS13.9 SS23.0 » El usuario especifica la
operaciéon proporcionando el
valor de:

.0 SD3.0 SS13.0,5523.

y genera la orden de comienzo
con Xg

FIN

DT .

Diseno de una calculadora con 16 registros

> Carta ASM

0 0 1 RD «— RSl + RSZ uniidad
e
010 Rp<Rg-Rg, control
011 RD(_RSI@RSZ
100 Rp« RgjorRg
AN
101 RD «— RSl and RSZ
110 Rp« Rg; <<Rg
111 Rp < Rg; >>Rg, 001
010 . 110 110
T o) 101
0000 S1+S2
0001 S1-S2
0010 S2

0011 S1 xor S2
0100 S1orS2
0101 S1 and S2
0110 S1<<S2
0111 S1>>S2
1000 S1>>>S2

DT .

Diseino de una calculadora con 16 registros

» Carta ASM v descripcién Verilog del controlador

module unidad_control3(
input ck, XS, 10, 11, 12, reset,
output reg [3:0] P, W,FIN
);
parameter SO = 2'b00,
S1=2'b01,
SF=2'b10;

reg [1:0] current_state,next_state;

always @(posedge ck or posedge reset)
begin
if(reset)
current_state <= S0;
else
current_state <= next_state;
end

SIGUE ->

62

» Carta ASM y descripcién Verilog del controlador

001

010

always @(current_state,10,I11,I12,XS)

begin
P[O] = 0O;
P[1] = 0O;
P[2] = O;
P[3] = 0;
FIN = 0;
W = 0;

next_state = SO;
case(current_state)

SO:
if(XS) next_state = S1;
S1:
begin
W=1;
case ({I2,11,10})
2: P[O0]= 1;
3: begin P[1]=1; P[0]= 1; end
4: P[2]= 1;

5: begin P[2]=1; P[0]= 1; end
6: begin P[2]=1; P[1]= 1; end
7: begin P[2]=1; P[1]= 1; P[0]= 1; end
endcase
next_state = SF;
end
SF:
FIN = 1;
endcase
end
endmodule

63

Disenno de una calculadora con 16 registros

» Conexion de unidades de datos y de control:
LI, X SD3.4 SS15.0 5525

vV V V

FIN

module calaldadoral6reg #parameter N=32) (input d¢ XS D, I, D, reset,
input [3:0] SD,SS1, 952, output FIN);

wirew //cables para conexion entreinstandas
wire [3:0]wP;

unidad_datos3 #N) ud_aalc (.dk(dk),. WW),.P(WP),.SD(SD),.S51(S51).SS2(SS2);
unidad_control3 uc_cald(.dk(ck).reset(reset). XSOS).FIN(FIN),. D), IL(TL), . I(12) . W(w),-P(P))

64

Técnicas de realizacion de u. de control

- Estrategias:
» (Cableada (como circuito secuencial sincrono)
» Un biestable por estado
» Microprogramado

DT

65

Ejemplo de uso de la calculadora

» Realizacién de la operacién R6 < 3R4-2R1

» Setrata de una operacién mas compleja no incluida en la tabla de
operacion del sistema.

» Se puede realizar mediante una secuencia de instrucciones (nivel
ISP)

» Instruccién 1: Rg<R, - Ry
» Instruccién 2: Rg—Rg + Rg
» Instruccién 3: Rg—R¢+R,

66

Calculadora frente a computador

» Similitudes

» Podemos resolver problemas complejos a partir de las
instrucciones del sistema mediante programacion (software).

» El usuario no necesita ser especialista en la electrénica del sistema
(hardware).

» Deficiencias

» No hay automatizacién en la ejecucion del programa: cada vez que
se ejecuta una instruccion el usuario debe activar Xs, esperar la
seflal de FIN y suministrar la siguiente.

» No hay programa almacenado: para ejecutar cada instruccion el
usuario debe proporcionar los valores SD,.,SS15.,y SS25., para
cada una de las tres instrucciones.

DT <

	Slide 1: Tema 2
	Slide 2: Contenidos del tema
	Slide 3: Nivel RT: circuitos versus sistemas
	Slide 4: Nivel RT: Descripción de componentes
	Slide 5: Nivel RT: Ejemplos de operación
	Slide 6: Nivel RT: Ejemplos de descripción
	Slide 7: Nivel RT: Ejemplos de descripción
	Slide 8: Nivel RT: Operaciones entre varios registros
	Slide 9: Nivel RT: Estructura general del sistema digital
	Slide 10: Nivel RT: Macro y micro -operaciones
	Slide 11: Nivel RT: Ejecución de una mop
	Slide 12: Componentes de la Unidad de Datos
	Slide 13: Bloque de interconexión: buses
	Slide 14: Bloque de interconexión: buses
	Slide 15: Bloque de interconexión: ejemplo
	Slide 16: Bloque de interconexión: ejemplo
	Slide 17: Bloque de interconexión: ejemplo
	Slide 18: Bloque de interconexión: ejemplo
	Slide 19: Bloque de interconexión: ejemplo
	Slide 20: Diseño de un sistema digital
	Slide 21: Diseño de una calculadora simple
	Slide 22: Diseño de la unidad de datos de una calculadora
	Slide 23: Diseño de la unidad de datos de una calculadora
	Slide 24: Descripción Verilog de los componentes
	Slide 25: Descripción Verilog de los componentes
	Slide 26: Descripción Verilog de la unidad de datos
	Slide 27: Descripción Verilog de la unidad de datos
	Slide 28: Descomposición en microoperaciones
	Slide 29: Descripción mediante cartas ASM
	Slide 30: Descripción mediante cartas ASM
	Slide 31: Errores comunes en cartas ASM
	Slide 32: Consideraciones temporales
	Slide 33: Descripción mediante cartas ASM
	Slide 34: Diseño de la calculadora simple
	Slide 35: Carta ASM de la calculadora
	Slide 36: Carta ASM de la calculadora
	Slide 37: Descripción Verilog de la u. de control de la calculadora
	Slide 38: Descripción Verilog de la u. de control de la calculadora, estructura general.
	Slide 39: Descripción Verilog de la u. de control de la calculadora, procedimiento.
	Slide 40: Descripción Verilog de la u. de control de la calculadora
	Slide 41: Descripción Verilog de la u. de control de la calculadora
	Slide 42: Descripción Verilog de la u. de control de la calculadora
	Slide 43: Descripción Verilog de la u. de control de la calculadora
	Slide 44: Diseño de la calculadora simple
	Slide 45: Diseño de la unidad de datos de una calculadora: solución con 3 buses
	Slide 46: Descripción Verilog de la u. datos de la calculadora : solución con 3 buses
	Slide 47: Descripción Verilog de la u. datos de la calculadora : solución con 3 buses
	Slide 48: Carta ASM: solución con 3 buses
	Slide 49: Carta ASM: solución con 3 buses
	Slide 50: Descripción Verilog de la u. de control de la calculadora: solución con 3 buses
	Slide 51: Descripción Verilog de la u. de control de la calculadora: solución con 3 buses
	Slide 52: Descripción Verilog de la u. de control de la calculadora: solución con 3 buses
	Slide 53: Descripción Verilog (compacta) de la u. de control de la calculadora: solución con 3 buses
	Slide 54: Descripción Verilog (compacta) …
	Slide 55: Diseño de la calculadora simple: solución con 3 buses
	Slide 56: Diseño de una calculadora con 16 registros
	Slide 57: Diseño de una calculadora con 16 registros
	Slide 58: Descripción de la nueva ALU
	Slide 59: Diseño de una calculadora con 16 registros
	Slide 60: Diseño de una calculadora con 16 registros
	Slide 61: Diseño de una calculadora con 16 registros
	Slide 62: Diseño de una calculadora con 16 registros
	Slide 63
	Slide 64: Diseño de una calculadora con 16 registros
	Slide 65: Técnicas de realización de u. de control
	Slide 66: Ejemplo de uso de la calculadora
	Slide 67: Calculadora frente a computador

