
Tema 2

Sistemas Digitales

2

Contenidos del tema

El nivel RT

Diseño de la unidad de datos

Interconexión mediante buses

Ejemplo: diseño de una calculadora simple

Diseño de la unidad de control:

Descripción mediante cartas ASM

Descripción mediante Verilog

Otros ejemplos

3

Nivel RT: circuitos versus sistemas

x

Circuito
Combinacional

z1

zk

x1

xn

y1

yr

reloj

B1

Br

Unidad de
Control

Unidad de
Procesado

XIN

X Z

ZOUT

DIN DOUT

X : cualificadores o entradas de control
Z : comandos o salidas de control
D: datos

reloj

CIRCUITOS SISTEMAS

0,1 Información Palabras de datos

De conmutación Nivel/Lenguaje RT (Register Transfer)

Máquina de estados finitos Funcionalidad
Instrucciones:
Operaciones

Puertas y biestables Componentes MUX, ALU, …, registros,…

Líneas (cables) Conexión Buses

Combinacional y
almacenamiento (memoria)

Organización
Procesado de datos y

control

Los sistemas que trataremos serán síncronos y sus biestables serán todos
disparados por el mismo flanco de la misma señal de reloj.

Con frecuencia omitiremos la representación de la señal de reloj.

4

Nivel RT: Descripción de componentes

Registro: unidad básica de almacenamiento de datos

Representación
estructural

Representación
funcional

Control
S1 S2 ….Sm

Operación a
Nivel RT

0 0 … 0
0 0 … 1

…
1 1 … 1

A ← DIN

A ← 0
…

otras





s1
DIN

n

A[n]

ckDOUT

n

sm

5

Nivel RT: Ejemplos de operación

De escritura
(secuencial)

Operación Notación RT

Carga en paralelo
Despl. a izquierdaR

Despl. a derecha R
Incremento
Decremento
Puesta a 0
Puesta a 1

NOP/Inhibición

A ← DIN

A ← SHL(A,DL)

A ← SHR(A,DR)

A ← A + 1

A ← A - 1

A ← 0

A ← 1…1

A ← A

De lectura
(combinacional)

Operación Notación RT

Lect. incondicional Dout = [A]

Lect. condicional R: Dout = [A]

Función del dato Z=1 si [A]=0

6

Nivel RT: Ejemplos de descripción

Registro universal de n bits

Representación
estructural

Representación
funcional

Control
S1 S0

Escritura
A ←

Lectura
DOUT =

0 0
0 1
1 0
1 1

A ← A

A ← DIN

A ← SHR(A,DR)

A ← SHL(A,DL)

DOUT=[A]

S1

S0

ck





n

A[n]

DOUT

n

DIN

DR DL

7

Nivel RT: Ejemplos de descripción

Memoria RAM comercial: RAM 2114

Representación
estructural

Representación
funcional

Control
CS’ R/W’

Escritura

RAM ←
Lectura

D3-0=

1 -
0 1
0 0

RAM ← RAM

RAM ← RAM

RAM(A) ← D3-0

HI
[RAM(A)]

D3-0
CS

R/ W

A9:0

RAM 1Kx4

D3:0

10

4

8

Nivel RT: Operaciones entre varios registros

Ejemplos:

B

AX1

B C

A

=1

X1: A ← B
X2: A ← B ⊕ C

X2
W

W

9

Nivel RT: Estructura general del sistema digital

Generalización: f(x): A ← G(B, C, …)

Unidad de datos
(o unidad de procesado)

Unidad de control

- evalúa f(x)

- genera la
secuencia de
señales de control

BR

C

circ.
comb.
G(…)

AW

RB

WA

Ck

^

^

^

10

Nivel RT: Macro y micro -operaciones

Macrooperación (o instrucción):

Es cada tarea que especifica el usuario y que el sistema realiza
automáticamente

En general, el sistema emplea varios ciclos en su ejecución.

La unidad de control “dirige/supervisa” la tarea realizada

Microoperación (op):

Es cada tarea que el sistema realiza en un único ciclo de reloj

En general, consiste en una o varias transferencias entre registros

11

Nivel RT: Ejecución de una op

Ciclo K
f(x): A ← G(B, C, …)

Ciclo K

Unidad de datos/procesadoUnidad de control

- evalúa f(x)

- genera la
secuencia de
señales de control

BR

C

circ.
comb.
G(…)

AW

RB

WA

Ck

^

^

^

Ck:

RB:

Sal B:

Sal G:

A: G(B0, C0, ...)

HI HI

???

A0

???

WA :

f(x):

B0

G(B0, C0, ...)

12

Componentes de la Unidad de Datos

registros unidades funcionales

Bloque
de

interconexión

entradas

salidas

13

Bloque de interconexión: buses

Bus:
en un sistema digital, un bus es un conjunto de n
líneas ordenadas que discurren en paralelo y
transportan información (palabras)

B0
B1

Bn-1

n

n

B[n] = B0:n-1

{BUS

B[n] = B0:n-1

Bn-1:0

Bn-1:0

14

Bloque de interconexión: buses

Estándar (0,1)

Triestado (0,1, HI)

∇

Tipos de salida: Tipos de interconexión:

Fuente

Destino

Unidireccional

Fu/De

De/Fu

Bidireccional

Dedicados

Compartidos

15

Bloque de interconexión: ejemplo

Se dispone de 4 registros A3,A2,A1,A0 con carga en paralelo.

Hay que realizar la conexión para la transferencia
AD  AF, con F, D  {0, 1, 2, 3}

Selección de fuente: F1F0

Selección de destino: D1D0

A3 A2 A1 A0

16

w

Bloque de interconexión: ejemplo

Caso 1: registros con salida y entrada separadas

W
R

W
R ▽

▽

Caso 2: registros con salida y entrada separadas,
salida triestado

Caso 3: registros con un único bus bidireccional de
salida y entrada

17

Bloque de interconexión: ejemplo

Caso 1: registros con salida y entrada separadas

A3

W

n

A2

W

n

A1

W

n

A0

W

n

D1

D0

DEC

2 : 4 3

2
1

00

10

1

0 0 01

F1

F0
n x MUX 4 : 1

1
0

3210

AF = A3; F1F0 = 1 1

1
1

[A3]

Ejemplo, A3 → A1

AD = A1

Solución
multiplexada

Ejemplo: A1 A3

18

Bloque de interconexión: ejemplo

Caso 2: registros con salida y entrada separadas,
salida triestado

A3

W

n

A2

W

n

A1

W

n

A0

W

n

D1

D0

DEC

2 : 4 3

2
1

00

10

1

0 0 01

Ejemplo, A3 → A1

F1

F0

DEC

2 : 4

3

2
1

0
1

0

R R R R   

1

1 1
0
0
0

[A3]

Ejemplo: A1 A3

19

Bloque de interconexión: ejemplo

Caso 3: registros con un único bus bidireccional de
salida y entrada

A3

W
A2

W
A1

W
A0

W

D1

D0

DEC

2 : 4 3

2
1

00

10

1

0 0 01

Ejemplo, A3 → A1

F1

F0

DEC

2 : 4

3

2
1

0
1

0

R R R R   

1

1

100 0

Ejemplo: A1 A3

20

Diseño de un sistema digital

Metodología

Paso 1: Comprender claramente las especificaciones del sistema a
diseñar y definir el conjunto de instrucciones/operaciones.
Los registros que aparecen en la descripción de las macrooperaciones
son los registros visibles.

Paso 2: Proponer una unidad de datos capaz de ejecutar todas las
operaciones especificadas. Debe incluir los registros visibles.

Paso 3: Describir todos los componentes a nivel RT estructural y
funcional.

Paso 4: Descomponer las macrooperaciones en microoperaciones
para la arquitectura propuesta.

Paso 5: Desarrollar la unidad de control

21

Diseño de una calculadora simple

Paso 1- Especificaciones del sistema a diseñar:

Se dispone de 2 registros, A y B y se desea poder realizar cualquiera
de las siguientes operaciones:

Se han asignado los códigos de modo que el registro destino se
identifica con I0 y la operación con I1.

I1 I0 operación

0 0 A ← A + B

0 1 B ← A + B

1 0 A ← A - B

1 1 B ← A - B

A

B

I1

I0

22

Diseño de la unidad de datos de una
calculadora

Paso 2 - Proponemos una arquitectura genérica de un bus
capaz de ejecutar las operaciones especificadas.

A

B

Ra

Wa

Rb

Wb

▽DAT

WRT

AC
WAC

RAC

RT

P1

P0

IA IB

▽ OUT

C1

C0

W

OUT

IN

IN
W
R

R
W

R
W

▽DAT

OUT

23

Diseño de la unidad de datos de una
calculadora

Paso 3 – Describimos los componentes a nivel RT

X▽DAT

IA IB

W RT← OUT=

0
1

RT
IN

[RT]
[RT]

RW X ← DAT=

0 0
0 1
1 0
1 1

X
DAT

X
Proh

HI
DAT
[X]

proh

AC

W R AC← OUT=

0 0
0 1
1 0
1 1

AC
AC
IN
IN

HI
[AC]
HI

[AC]

C1 C0 OUT=

0 0
0 1
1 0
1 1

IA + IB
IA

IA –IB
IB

OUT

▽OUT

C1

C0

RT
IN

OUT
W

W
R

IN

R
W

24

//declaración del módulo correspondiente a RT

module RT #(parameter W=8)(
input wire Wt,
input wire ck,
input wire [W-1:0] IN,
output wire [W-1:0] OUT

);
reg [W-1:0] q;

always@(posedge ck)
if(Wt)

q<=IN;
assign OUT =q;

endmodule

//declaración del módulo correspondiente a AC

module AC #(parameter W=8)(
input wire Wac,
input wire Rac,
input wire ck,
input wire [W-1:0] IN,
output wire [W-1:0] OUT

);
reg [W-1:0] q;

always@(posedge ck)
if(Wac)

q<=IN;
assign OUT = Rac ? q : 'bz;

endmodule

Descripción Verilog de los componentes

W RT← OUT=

0
1

RT
IN

[RT]
[RT]

RT
IN

OUT
W

W R AC← OUT=

0 0
0 1
1 0
1 1

AC
AC
IN
IN

HI
[AC]
HI

[AC]

AC
▽OUT

W
R

IN

25

//declaración del módulo X correspondiente a A y B

module X #(parameter W=8, initial_value= 0)(
input wire Wx,
input wire Rx,
input wire ck,
inout wire [W-1:0] INOUT

);
reg [W-1:0] q;

always@(posedge ck)
begin

q<=initial_value;
if(Wx)

q<=INOUT;
end

assign INOUT = Rx&~Wx ? q : 'bz;
endmodule

//declaración del módulo correspondiente a la ALU

module ALU #(parameter W=8)(
input wire C1,
input wire C0,
input wire [W-1:0] IA,
input wire [W-1:0] IB,
output reg [W-1:0] OUT);

always@(*)
case({C1,C0})

2'b00: OUT=IA+IB;
2'b01: OUT=IA;
2'b10: OUT=IA-IB;
2'b11: OUT=IB;

endcase
endmodule

Descripción Verilog de los componentes

X▽DAT

RW X ← DAT=

0 0
0 1
1 0
1 1

X
DAT

X
Proh

HI
DAT
[X]

proh

R
W

IA IB
C1 C0 OUT=

0 0
0 1
1 0
1 1

IA + IB
IA

IA –IB
IB

OUT

C1

C0

26

//descripción de la unidad de procesado de datos

module unidad_datos #(parameter W=8, initial_A=8'd 0, initial_B=8'd 1)(
input wire ck,
input wire Wac,
input wire Rac,
input wire Wt,
input wire Ra,
input wire Wa,
input wire Rb,
input wire Wb,
input wire P0,
input wire P1,
output wire [W-1:0] rega,
output wire [W-1:0] regb

);
wire [W-1:0] common_bus, ALU_out, RT_out;

RT #(.W(W)) RT_insta (
.Wt(Wt),
.ck(ck),
.IN(common_bus),
.OUT(RT_out));

AC #(.W(W)) AC_insta(
.Wac(Wac),
.Rac(Rac),
.ck(ck),
.IN(ALU_out),
.OUT(common_bus));

Descripción Verilog de la unidad de datos

A

B

Ra

Wa
Rb

Wb

▽DAT

WRT

AC
WAC

RAC

RT

P1

P0

IA IB

▽ OUT

C1

C0

W
OUT

IN

IN
W
R

R
W

R
W

▽DAT

OUT

common_bus

ALU_out

RT_out

Se han nombrado los buses
internos de la unidad:
RT_out, ALU_out y common_bus

27

//continuación de la descripción de la unidad de procesado de datos

X #(.W(W),.initial_value(initial_A)) A_insta(
.Wx(Wa),
.Rx(Ra),
.ck(ck),
.INOUT(common_bus));

X #(.W(W),.initial_value(initial_B)) B_insta(
.Wx(Wb),
.Rx(Rb),
.ck(ck),
.INOUT(common_bus));

ALU #(.W(W)) ALU_insta(
.C1(P1),
.C0(P0),
.IA(common_bus),
.IB(RT_out),
.OUT(ALU_out));

assign rega=Ra?common_bus : 'bz;
assign regb=Rb?common_bus : 'bz;

endmodule

Descripción Verilog de la unidad de datos

A

B

Ra

Wa
Rb

Wb

▽DAT

WRT

AC
WAC

RAC

RT

P1

P0

IA IB

▽ OUT

C1

C0

W
OUT

IN

IN
W
R

R
W

R
W

▽DAT

OUT

common_bus

ALU_out

RT_out

Se han nombrado los buses
internos de la unidad:
RT_out, ALU_out y common_bus

28

Descomposición en microoperaciones

Paso 4 –Descomponemos las macrooperaciones en
microoperaciones.

Durante la ejecución de una macrooperación pueden modificarse
los registros ocultos y solo los registros visibles que aparezcan
como destino en la descripción de la macrooperación.

A ← A + B B ← A + B A ← A - B B ← A - B

op 1 RT ← B

op 2 AC ← A + RT AC ← A - RT

op 3 A ← AC B ← AC A ← AC B ← AC

29

Descripción mediante cartas ASM

Definiciones

acciones

camino de
entrada

camino de
salida

S

símbolo
de estado

CAJA DE ESTADO

camino
de

salida

CAJA DE DECISIÓN

camino de entrada

vector de
condiciones

CAJA DE ACCIÓN
CONDICIONAL

camino de
entrada

camino de
salida

accionesvalor
1

camino
de

salida

camino
de

salida

valor
2

valor
n

30

Descripción mediante cartas ASM

Definiciones

acciones

condición

BLOQUE ASM

accionescondición

CARTA ASM

grafo orientado
y cerrado que
interconecta
bloques ASM

una y solo una
caja de estados

número variable de caminos de salida

31

Errores comunes en cartas ASM

32

Consideraciones temporales

El orden de las cajas en un bloque ASM
no implica orden temporal.

Todas las tareas de un bloque ASM se hacen en un
ciclo de reloj

Igual significado lógico

33

Descripción mediante cartas ASM

Inicio y fin de operación

Xs

estado inicial (NOP)

cuerpo de
la carta ASM

FIN estado de fin

0

1

S0

SF

Xs: entrada con la que se
inicia la operación (Xstart)

FIN: salida que indica que la
operación ha terminado

34

Organización del sistema digital:

Diseño de la calculadora simple

U. de datos

A

B

WAC, RAC

WRT

Ra,RbWa,Wb

P1

U. de control

I1I0 XS

El usuario especifica la
operación proporcionando el
valor de I1, I0 y genera la
orden de comienzo con XS

FIN

P0

35

A ← A + B
I1I0=00

B ← A + B
I1I0=01

A ← A – B
I1I0=10

B ← A - B
I1I0=11

1 RT ← B

2 AC ← A + RT AC ← A - RT

3 A ← AC B ← AC A ← AC B ← AC

U. de datos

A

B

WAC, RAC

WRT

Ra,RbWa,Wb

P1

U. de control

I1I0 XS

Xs0

1

S0

SF

I1

AC ← A-RT

RT ← BS1

S2

1

S3

I0
1I0

0

B ← AC A ← AC

0

Carta ASM de la calculadora

AC ← A+RT

unidad
de

datos

FIN

P0

36

Xs

FIN

0

1

S0

SF

I1

P1

WRT,Rb
S1

WAC ,Ra
S2

1

RAC
S3

I0
1I0

0

WbWa

0

Carta ASM de la calculadora

Xs0

1

S0

SF

I1

AC ← A-RT

RT ← BS1

S2

1

S3

I0
1I0

0

B ← AC A ← AC

0
unidad

de
datos

unidad
de

controlAC ← A+RT

37

Descripción Verilog de la u. de control de la
calculadora

La descripción canónica de máquinas de estado en HDL
Verilog es un proceso sistemático

Se utilizará una estructura general del código en la que hay 2
procesos

Uno de asignación de siguientes estados

Otro de calculo de siguiente estado y salidas

38

Descripción Verilog de la u. de control de la
calculadora, estructura general.

module mi_carta_asm(

input LISTA_DE_ENTRADAS (incluyendo clk y reset),

output reg LISTA_DE_SALIDAS);

// DEFINICIóN Y ASIGNACIÓN DE ESTADOS

parameter LISTA_DE_ESTADOS

// VARIABLES PARA ALMACENAR EL ESTADO PRESENTE Y SIGUIENTE

reg [N:0] current_state, next_state;

// PROCESO DE CAMBIO DE ESTADO

always @(posedge ck or posedge reset)

.......

// PROCESO SIGUIENTE ESTADO Y SALIDA

always @(current_state, LISTA_DE_ENTRADAS)

.......

endmodule

39

Descripción Verilog de la u. de control de la
calculadora, procedimiento.

En la estructura general hay que completar 4 partes de código:

1. Definición y asignación de estados, según el número de estados
utilizaremos más o menos bits.

2. Definición de registros para almacenar el estado actual y el siguiente.
Deben ser del mismo tamaño en bits que el utilizado en el punto
anterior.

3. Proceso de cambio de estado: siempre es el mismo código

4. Proceso de cálculo de siguiente estado y salida: Hay que rellenar el
código correspondiente a la carta ASM

40

Descripción Verilog de la u. de
control de la calculadora

module unidad_control(
input ck, XS, I0, I1, reset,
output reg RAC, Rb, Ra, WRT, WAC, Wa, Wb, P1, P0, FIN
);

parameter S0 = 3'b000,
S1 = 3'b001,
S2 = 3'b010,
S3 = 3'b011,
SF = 3'b100;

reg [2:0] current_state,next_state;

always @(posedge ck or posedge reset)
begin
if(reset)
current_state <= S0;

else
current_state <= next_state;

end

SIGUE ->

Xs

FIN

0

1

S0

SF

I1

P1

WRT,Rb
S1

WAC ,Ra
S2

1

RAC
S3

I0
1I0

0

WbWa

0

As ig na ción
de es ta dos

Proceso
siguiente
estado

41

Descripción Verilog de la u. de
control de la calculadora Xs

FIN

0

1

S0

SF

I1

P1

WRT,Rb
S1

WAC ,Ra
S2

1

RAC
S3

I0
1I0

0

WbWa

0

El proceso de cálculo del siguiente estado y
salida se realiza con una única sentencia
“CASE”

La sentencia “CASE” debe contemplar todos
los estados de la carta ASM

Antes de la sentencia “CASE” se recomienda
establecer por defecto a cero todas las salidas
y next state a S0

42

Descripción Verilog de la u. de
control de la calculadora

a lw a y s @(c ur r e n t _ s t a t e ,I 0 , I 1 ,X S)
b e g in
R A C = 0 ;
W A C = 0 ;
R a = 0 ;
R b = 0 ;
P 0 = 0 ;
P 1 = 0 ;
W R T = 0 ;
W a = 0 ;
W b = 0 ;
F I N = 0 ;
n e x t _ s t a t e = S 0 ;
c a s e (c u r r e n t _ s t a t e)

S 0 :
i f (X S) n e x t _ s t a t e = S 1 ;

S 1 :
b e g in

W R T = 1 ;
R b = 1 ;
n e x t _ s t a t e = S 2 ;

e n d

Xs

FIN

0

1

S0

SF

I1

P1

WRT,Rb
S1

WAC ,Ra
S2

1

RAC
S3

I0
1I0

0

WbWa

0

Estado S0

E s ta do S1

Valor por defecto de las salidas
establecido a cero

Valor por defecto
del estado: S0

43

Descripción Verilog de la u. de
control de la calculadora

S 2 :
b e g in

W A C = 1 ;
R a = 1 ;
i f (I 1)

P 1 = 1 ;
n e x t _ s t a t e = S 3 ;

e n d
S 3 :

b e g in
R A C = 1 ;
i f (I 0)

W b = 1 ;
e ls e

W a = 1 ;
n e x t _ s t a t e = S F ;

e n d
S F :

F I N = 1 ;
e n d ca s e

e n d
e n d m o du le

Xs

FIN

0

1

S0

SF

I1

P1

WRT,Rb
S1

WAC ,Ra
S2

1

RAC
S3

I0
1I0

0

WbWa

0

Estado S2

Estado S3

Estado SF

44

Conexión de unidades de datos y de control:

Diseño de la calculadora simple

Unidad
de

datos

WAC, RAC

WRT

Ra,RbWa,Wb

P1Unidad
de

control

I1 I0 XS

FIN

P0

module calculadora # (p a r a m e t e r N = 8) (input ck, XS, I0, I1, reset, output FIN);

wire w1,w2,w3,w4,w5,w6,w7,w8,w9;

unidad_datos #(N) ud_calc (.ck(ck),.WAC(w1),.RAC(w2),.WRT(w3),
.Ra(w4),.Rb(w5),.Wa(w6),.Wb(w7),.P0(w8),.P1(w9));

unidad_control uc_calc(.ck(ck),.reset(reset),.XS(XS),.FIN(FIN),.I0(I0),.I1(I1),
.WAC(w1),.RAC(w2),.WRT(w3),.Ra(w4),.Rb(w5),
.Wa(w6),.Wb(w7),.P0(w8),.P1(w9));

endmodule

45

Diseño de la unidad de datos de una
calculadora: solución con 3 buses

Para las mismas especificaciones del ejemplo anterior
proponemos una unidad de datos diferente.

Con esta arquitectura se
necesitan menos registros.

X

W X← OUT=

0
1

X
IN

[X]
[X]

Arquitectura específica.

W
IN

OUT

A

B

Wa

Wb

P1

P0

IA IB
C1

C0

W
IN

OUT

W
IN

OUT

OUT

46

//declaración del tipo módulo correspondiente a RA y RB

module type1 #(parameter N=8)
(input W, ck, input [N-1:0] IN,
output reg [N-1:0] OUT);

always@(posedge ck)
if(W)

OUT<=IN;
endmodule

//declaración del tipo módulo correspondiente a la ALU

module ALU_type #(parameter N=8)
(input C1, C0, input [N-1:0] IA,IB,

output reg [N-1:0] OUT);
always@(*)

case({C1,C0})
2'b00: OUT=IA+IB;
2'b01: OUT=IA;
2'b10: OUT=IA-IB;
2'b11: OUT=IB;

endcase
endmodule

Descripción Verilog de la u. datos de la
calculadora : solución con 3 buses

A

B

Wa

Wb

P1

P0

IA IB
C1

C0

W
IN

OUT

W
IN

OUT

OUT

47

/ / d e c la r a c ió n d e la u n id a d de p r oc e s a d o d e da t os

m od u le u n ida d _ da t o s 2 # (p a r a m e t e r N = 8)
(in pu t c k ,W a ,W b ,P 0 ,P 1) ;

w ir e [N - 1 : 0] A L U_ ou t , O U T _ A , O UT _ B ;

t y p e 1 # (N) A (W a ,c k ,A L U _ ou t ,O U T _ A) ;
t y p e 1 # (N) B (W b,c k ,A L U _ o u t,O UT _ B) ;
A L U_ t y p e # (N) A L U(P 1 ,P 0 , O UT _ A ,O UT _ B ,A L U_ o ut) ;

e n d m o du le

Descripción Verilog de la u. datos de la
calculadora : solución con 3 buses

A

B

Wa

Wb

P1

P0

IA IB
C1

C0

W
IN

OUT

W
IN

OUT

OUT

ALU_out

OUT_B
OUT_A

ALU_TYPE

type1

48

Carta ASM: solución con 3 buses

Las macrooperaciones se
realizan en un único ciclo
de reloj.

I1 I0 operación

0 0 A ← A + B

0 1 B ← A + B

1 0 A ← A - B

1 1 B ← A - B

Xs0

S0

SF

S1

1

11I1I0

B ← A-B

00

A ←A+B

B ←A+B A ← A-B

01 10
A

B

Wa

Wb

P1

P0

IA IB
C1

C0

W
IN

OUT

W
IN

OUT

OUT

49

Xs

FIN

0

S0

SF

S1

1

11I1I0

P1,Wb

00

Wa

Wb P1,Wa

01 10

Carta ASM: solución con 3 buses

Xs0

S0

SF

S1

1

11I1I0

B ← A-B

00

A ←A+B

B ←A+B A ← A-B

01 10

unidad
de

datos

unidad
de

control

50

Descripción Verilog de la u. de control de la
calculadora: solución con 3 buses

Xs

FIN

0

S0

SF

S1

1

11I1I0

P1,Wb

00

Wa

Wb P1,Wa

01 10

module unidad_control2(
input ck, XS, I0, I1, reset,
output reg Wa, Wb, P1, P0, FIN
);

parameter S0 = 2'b00,
S1 = 2'b01,
SF = 2'b10;

reg [1:0] current_state,next_state;

always @(posedge ck or posedge reset)
begin

if(reset)
current_state <= S0;

else
current_state <= next_state;

end

SIGUE ->

51

Descripción Verilog de la u. de control de la
calculadora: solución con 3 buses

Xs

FIN

0

S0

SF

S1

1

11I1I0

P1,Wb

00

Wa

Wb P1,Wa

01 10

always @(current_state,I0,I1,XS)
begin
P1 = 0;
P0 = 0;
Wa = 0;
Wb = 0;
FIN = 0;
next_state = S0;
case(current_state)
S0:
if (XS) next_state = S1;

SIGUE ->

52

Descripción Verilog de la u. de control de la
calculadora: solución con 3 buses

Xs

FIN

0

S0

SF

S1

1

11I1I0

P1,Wb

00

Wa

Wb P1,Wa

01 10

S1:
begin
if(I1==0 && I0==0)

Wa = 1;
else if(I1==0 && I0==1)

Wb = 1;
else if(I1==1 && I0==0)

begin
P1 = 1;
Wa = 1;
end

else
begin
P1 = 1;
Wb = 1;
end

next_state = SF;
end

SF:
FIN = 1;

endcase
end
endmodule

53

Descripción Verilog (compacta) de la u. de
control de la calculadora: solución con 3

buses
module unidad_control2(

inputck, XS, I0, I1, reset,
outputregP0,P1,Wa,Wb,FIN
);

parameterS0 = 2'b00,
S1 = 2'b01,
SF = 2'b10;

reg[1:0] current_state,next_state;

always @(posedgeck orposedgereset)
begin
if(reset)
current_state<= S0;

else
current_state<= next_state;

end

SIGUE ->

Xs

FIN

0

S0

SF

S1

1

Wa Wb

1
I00

P1

I1 10

54

always @(current_state,I0,I1,XS)
begin
P0 = 0;
P1 = 0;
FIN = 0;
Wa= 0;
Wb= 0;
next_state= S0;
case(current_state)
S0:
if(XS) next_state= S1;

S1:
begin
if(I0)

Wb= 1;
else

Wa= 1;
if(i1)

P1 = 1;
next_state= SF;
end

SF:
FIN = 1;

endcase
end
endmodule

Xs

FIN

0

S0

SF

S1

1

Wa Wb

1
I00

P1

I1 10

Descripción Verilog (compacta) …

55

Conexión de unidades de datos y de control:

Diseño de la calculadora simple:
solución con 3 buses

Unidad
de

datos 2

Wa

Wb

P1

Unidad
de

control 2

I1 I0 XS

FIN

P0

module calculadora # (p a r a m e t e r N = 8) (input ck, XS, I0, I1, reset, output FIN);

wire w1,w2,w3,w4;

unidad_datos2 #(N) ud_calc (.ck(ck),.P1(w1),.P0(w2),.Wa(w3),.Wb(w4));

unidad_control2 uc_calc(.ck(ck),.reset(reset),.XS(XS),.FIN(FIN),.I0(I0),.I1(I1),
.P1(w1),.P0(w2),.Wa(w3),.Wb(w4));

endmodule

56

Diseño de una calculadora con 16 registros
Especificaciones del sistema a diseñar:

Se dispone de 16 registros (R0, R1, …, R15) y se desea poder realizar
cualquiera de las siguientes operaciones:

D,S1,S2 {0,1,2,…,14,15}

D, S1 y S2 vienen determinados por SD3:0, SS13:0, SS23:0

I2I1I0 operación

0 0 0 RD ← RS1 + RS2

0 0 1 RD ← RS1 - RS2

0 1 0 RD ← RS1  RS2

0 1 1 RD ← RS1 or RS2

1 0 0 RD ← RS1 and RS2

1 0 1 RD ← RS1 << RS2

1 1 0 RD ← RS1 >> RS2

57

Arquitectura de la u. de datos:

R1

R0

R2
22
R3

…

R14

R15

W0

W1

W2

W3

W14

W15

S1 S2

OUT

0
.
.
.
.

15

0
.
.
.
.

15

SS13-0

SS23-0

Diseño de una calculadora con 16 registros

DEC 4:16

3
2
1
0

0
1
2
3

14
15

W0

W1

W2

W3

W14

W15

EN

W

D2

D1

D0

.

.

.

W

W

W

W

W

W

.

.

.

.

.

.

D3

P3-0 C3-0

rs1

rs2

alu_out

58

//declaración del módulo correspondiente a la ALU

module ALU #(parameter N=32)(
input wire [3:0] C,
input wire [N-1:0] S1,
input wire [N-1:0] S2,
output reg [N-1:0] OUT);

always@(*)
case(C)

2’b0000: OUT=S1+S2;
2’b0001: OUT=S1–S2;
2’b0010: OUT=S2;
2’b0011: OUT=S1^S2;
2’b0100: OUT=S1 | S2;
2’b0101: OUT=S1 & S2;
2’b0110: OUT=S1<<S2;
2’b0111: OUT=S1>>S2;
2’b1000: OUT=S1>>>S2;

endcase
endmodule

Descripción de la nueva ALU

C3-0 OUT=

0000
0001
0010
0011
0100
0101
0110
0111
1000

S1+S2
S1–S2
S2
S1 xor S2
S1 or S2
S1 and S2
S1<<S2
S1>>S2
S1>>>S2

S1 S2

OUT

C3-0

59

//declaración de la unidad de procesado de datos

module unidad_datos3 #(parameter N=32) (input ck,W,input [3:0] P,
input [3:0] SD,SS1,SS2);

wire [31:0] rs1, rs2; // salida de los MUX
wire [31:0] alu_out; // salida de la ALU

reg [31:0] R[0:15]; // banco de registros

assign rs1 = R[SS1];
assign rs2 = R[SS2];

always @(posedge clk)
if(W)

R[SD] <= alu_out;

alu #(.W(32)) alu (
.s1(rs1),
.s2(rs2),
.C(P),
.out(alu_out),

);

endmodule

Diseño de una calculadora con 16 registros
Descripción Verilog de la unidad de procesado

60

Organización del sistema digital:

Diseño de una calculadora con 16 registros

U. de datosU. de control

R0

R15

I2I1I0 XS

W,P3-0 .
.
.

SD3-0 SS13-0 SS23-0

FIN

El usuario especifica la
operación proporcionando el
valor de:

I2-0, SD3-0, SS13-0, SS23-0

y genera la orden de comienzo
con XS

61

Carta ASM

Diseño de una calculadora con 16 registros

unidad
de

control

I2I1I0 operación

0 0 1 RD ← RS1 + RS2

0 1 0 RD ← RS1 - RS2

0 1 1 RD ← RS1  RS2

1 0 0 RD ← RS1 or RS2

1 0 1 RD ← RS1 and RS2

1 1 0 RD ← RS1 << RS2

1 1 1 RD ← RS1 >> RS2

Xs

FIN

0

S0

SF

S1

1

100 101

I2:0

P0

001

W

010
011

110 110

P1:0

P2 P2,0

P2:1

P2:0

C3-0 OUT=

0000
0001

0010
0011
0100

0101
0110
0111

1000

S1+S2
S1–S2

S2
S1 xor S2
S1 or S2

S1 and S2
S1<<S2
S1>>S2

S1>>>S2

62

Carta ASM y descripción Verilog del controlador

Diseño de una calculadora con 16 registros

Xs

FIN

0

S0

SF

S1

1

100 101

I2:0

P0

001

W

010
011

110 110

P1:0

P2 P2,0

P2:1

P2:0

module unidad_control3(
input ck, XS, I0, I1, I2, reset,
output reg [3:0] P, W,FIN
);

parameter S0 = 2'b00,
S1 = 2'b01,
SF = 2'b10;

reg [1:0] current_state,next_state;

always @(posedge ck or posedge reset)
begin
if(reset)
current_state <= S0;

else
current_state <= next_state;

end

SIGUE ->

63

always @(current_state,I0,I1,I2,XS)
begin
P[0] = 0;
P[1] = 0;
P[2] = 0;
P[3] = 0;
FIN = 0;
W = 0;
next_state = S0;
case(current_state)
S0:

if(XS) next_state = S1;
S1:

begin
W = 1;
case ({I2,I1,I0})

2: P[0]= 1;
3: begin P[1]=1; P[0]= 1; end
4: P[2]= 1;
5: begin P[2]=1; P[0]= 1; end
6: begin P[2]=1; P[1]= 1; end
7: begin P[2]=1; P[1]= 1; P[0]= 1; end

endcase
next_state = SF;

end
SF:

FIN = 1;
endcase

end
endmodule

Carta ASM y descripción Verilog del controlador

Xs

FIN

0

S0

SF

S1

1

100 101

I2:0

P0

001

W

010
011

110 110

P1:0

P2 P2,0

P2:1

P2:0

64

Conexión de unidades de datos y de control:

Diseño de una calculadora con 16 registros

Unidad
de

datos

W

P3Unidad
de

control

FIN

P0

module calculadora16reg#(parameter N=32) (input ck, XS, I0, I1, I2, reset,
input [3:0] SD,SS1,SS2, output FIN);

wire w; //cables para conexiónentre instancias
wire [3:0] wP;

unidad_datos3 #(N) ud_calc(.ck(ck),.W(w),.P(wP),.SD(SD),.SS1(SS1),.SS2(SS2);
unidad_control3 uc_calc(.ck(ck),.reset(reset),.XS(XS),.FIN(FIN),.I0(I0),.I1(I1),.I2(I2),.W(w),.P(wP));

endmodule

P2

P1

I2I1I0 XS SD3-0 SS13-0 SS23-0

65

Técnicas de realización de u. de control

Verilog

Herramienta
de

síntesis

Netlist del
diseño

Estrategias:

Cableada (como circuito secuencial síncrono)

Un biestable por estado

Microprogramado

66

Ejemplo de uso de la calculadora

Realización de la operación R6  3R4-2R1

Se trata de una operación más compleja no incluida en la tabla de
operación del sistema.

Se puede realizar mediante una secuencia de instrucciones (nivel
ISP)

Instrucción 1: R6←R4 - R1

Instrucción 2: R6←R6 + R6

Instrucción 3: R6←R6+R4

67

Calculadora frente a computador

Similitudes

Podemos resolver problemas complejos a partir de las
instrucciones del sistema mediante programación (software).

El usuario no necesita ser especialista en la electrónica del sistema
(hardware).

Deficiencias

No hay automatización en la ejecución del programa: cada vez que
se ejecuta una instrucción el usuario debe activar Xs, esperar la
señal de FIN y suministrar la siguiente.

No hay programa almacenado: para ejecutar cada instrucción el
usuario debe proporcionar los valores SD3:0 SS13:0 y SS23:0 para
cada una de las tres instrucciones.

	Slide 1: Tema 2
	Slide 2: Contenidos del tema
	Slide 3: Nivel RT: circuitos versus sistemas
	Slide 4: Nivel RT: Descripción de componentes
	Slide 5: Nivel RT: Ejemplos de operación
	Slide 6: Nivel RT: Ejemplos de descripción
	Slide 7: Nivel RT: Ejemplos de descripción
	Slide 8: Nivel RT: Operaciones entre varios registros
	Slide 9: Nivel RT: Estructura general del sistema digital
	Slide 10: Nivel RT: Macro y micro -operaciones
	Slide 11: Nivel RT: Ejecución de una mop
	Slide 12: Componentes de la Unidad de Datos
	Slide 13: Bloque de interconexión: buses
	Slide 14: Bloque de interconexión: buses
	Slide 15: Bloque de interconexión: ejemplo
	Slide 16: Bloque de interconexión: ejemplo
	Slide 17: Bloque de interconexión: ejemplo
	Slide 18: Bloque de interconexión: ejemplo
	Slide 19: Bloque de interconexión: ejemplo
	Slide 20: Diseño de un sistema digital
	Slide 21: Diseño de una calculadora simple
	Slide 22: Diseño de la unidad de datos de una calculadora
	Slide 23: Diseño de la unidad de datos de una calculadora
	Slide 24: Descripción Verilog de los componentes
	Slide 25: Descripción Verilog de los componentes
	Slide 26: Descripción Verilog de la unidad de datos
	Slide 27: Descripción Verilog de la unidad de datos
	Slide 28: Descomposición en microoperaciones
	Slide 29: Descripción mediante cartas ASM
	Slide 30: Descripción mediante cartas ASM
	Slide 31: Errores comunes en cartas ASM
	Slide 32: Consideraciones temporales
	Slide 33: Descripción mediante cartas ASM
	Slide 34: Diseño de la calculadora simple
	Slide 35: Carta ASM de la calculadora
	Slide 36: Carta ASM de la calculadora
	Slide 37: Descripción Verilog de la u. de control de la calculadora
	Slide 38: Descripción Verilog de la u. de control de la calculadora, estructura general.
	Slide 39: Descripción Verilog de la u. de control de la calculadora, procedimiento.
	Slide 40: Descripción Verilog de la u. de control de la calculadora
	Slide 41: Descripción Verilog de la u. de control de la calculadora
	Slide 42: Descripción Verilog de la u. de control de la calculadora
	Slide 43: Descripción Verilog de la u. de control de la calculadora
	Slide 44: Diseño de la calculadora simple
	Slide 45: Diseño de la unidad de datos de una calculadora: solución con 3 buses
	Slide 46: Descripción Verilog de la u. datos de la calculadora : solución con 3 buses
	Slide 47: Descripción Verilog de la u. datos de la calculadora : solución con 3 buses
	Slide 48: Carta ASM: solución con 3 buses
	Slide 49: Carta ASM: solución con 3 buses
	Slide 50: Descripción Verilog de la u. de control de la calculadora: solución con 3 buses
	Slide 51: Descripción Verilog de la u. de control de la calculadora: solución con 3 buses
	Slide 52: Descripción Verilog de la u. de control de la calculadora: solución con 3 buses
	Slide 53: Descripción Verilog (compacta) de la u. de control de la calculadora: solución con 3 buses
	Slide 54: Descripción Verilog (compacta) …
	Slide 55: Diseño de la calculadora simple: solución con 3 buses
	Slide 56: Diseño de una calculadora con 16 registros
	Slide 57: Diseño de una calculadora con 16 registros
	Slide 58: Descripción de la nueva ALU
	Slide 59: Diseño de una calculadora con 16 registros
	Slide 60: Diseño de una calculadora con 16 registros
	Slide 61: Diseño de una calculadora con 16 registros
	Slide 62: Diseño de una calculadora con 16 registros
	Slide 63
	Slide 64: Diseño de una calculadora con 16 registros
	Slide 65: Técnicas de realización de u. de control
	Slide 66: Ejemplo de uso de la calculadora
	Slide 67: Calculadora frente a computador

