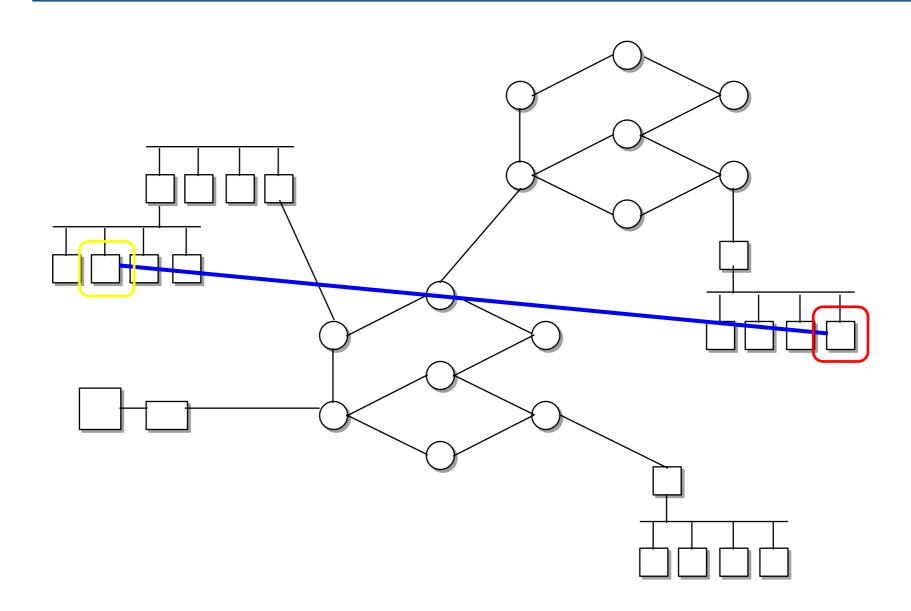
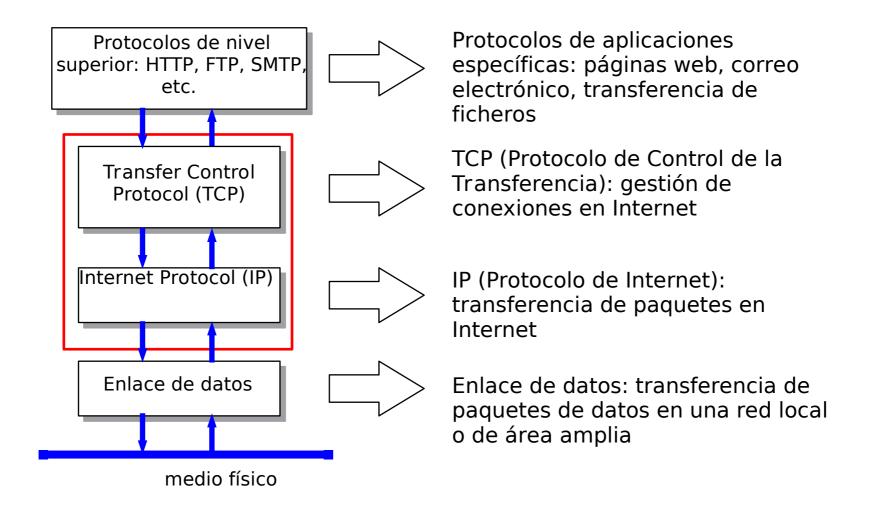
### Redes conmutadas y de área local


Jorge Juan Chico <jjchico@dte.us.es>, Julián Viejo Cortés <julian@dte.us.es> 2011-20 Departamento de Tecnología Electrónica Universidad de Sevilla

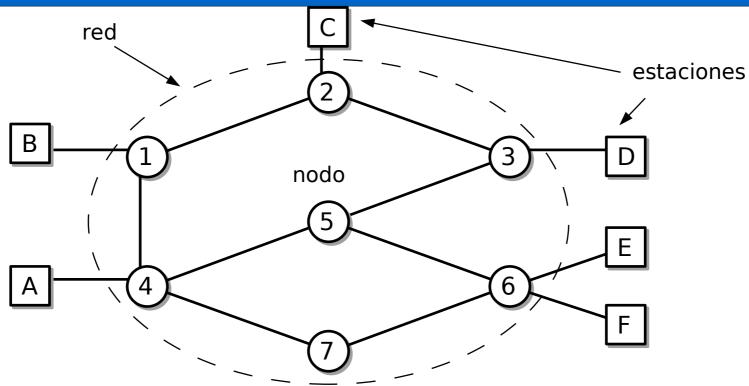
Usted es libre de copiar, distribuir y comunicar públicamente la obra y de hacer obras derivadas siempre que se cite la fuente y se respeten las condiciones de la licencia Attribution-Share alike de Creative Commons. Puede consultar el texto completo de la licencia en http://creativecommons.org/licenses/by-sa/3.0/

#### **Objetivos**

- Comprender el funcionamiento de las redes de comunicaciones
- Conocer los mecanismos básico de operación de las redes locales


# Introducción



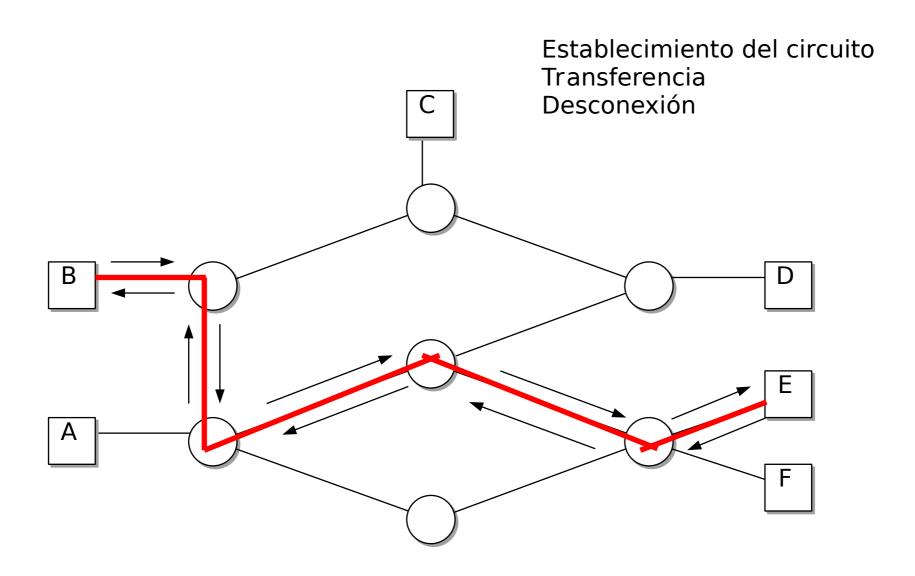

#### **Contenidos**

- Introducción
- Redes conmutadas
  - Conmutación de circuitos. Conmutación de paquetes. Enrutado
- Redes de área local: Ethernet
  - Topologías. Trama MAC. Acceso al medio

#### Introducción



#### Redes conmutadas

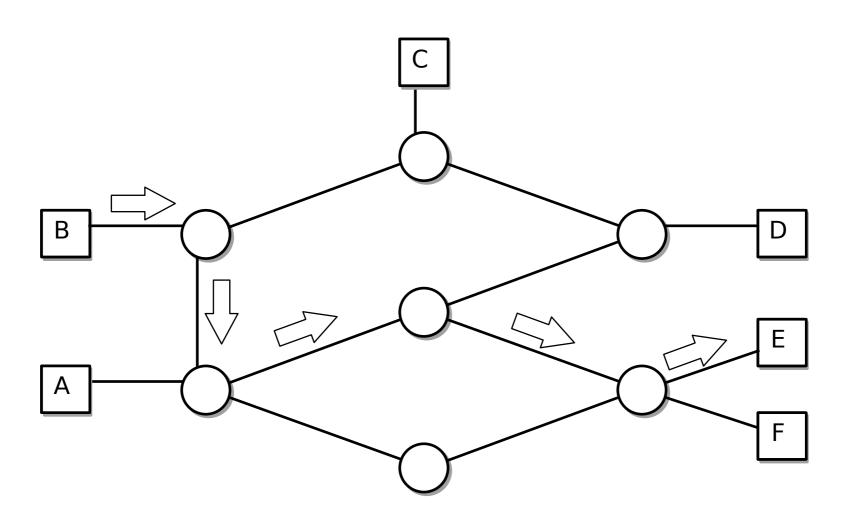



- Conjunto de nodos conectados por enlaces de datos.
- Estaciones: puntos terminales. Ej: ordenadores, teléfonos, etc.
- Nodos internos: conectados sólo a otros nodos.
- Nodos periféricos: conectados a estaciones.
- Enlaces con varios "canales" entre nodos (multiplexación).
- Varios caminos alternativos entre nodos.

#### Conmutación de circuitos

- Funcionamiento:
  - Se establece una conexión física permanente entre entre las estaciones durante la comunicación.
  - Fases:
    - Establecimiento del circuito: realización de llamada, realización de conexiones en los nodos.
    - Transferencia de datos: normalmente en ambos sentidos (full-duplex)
    - Desconexión: liberación de recursos
- Ejemplo: red telefónica conmutada "tradicional".

# Conmutación de circuitos Ejemplo: nodo B llama a E




### Conmutación de paquetes

- Desarrollada a principios de los 70 para comunicación de datos digitales
- Conmutación de circuitos:
  - poco eficiente
  - mal aprovechamiento de recursos
- Los nodos intercambian información digital
- Información dividida en paquetes, cada paquete contiene:
  - información de control: origen, destino, tamaño, prioridad, ...
  - datos a transferir
- Cada nodo "encola" los paquetes recibidos y los envía por la línea más adecuada según su destino.

### Conmutación de paquetes Funcionamiento

DATOS opciones origen: B destino: E



# Conmutación de paquetes Ventajas

- Mayor eficiencia: sólo se usan los enlaces cuando hay datos que enviar.
- Cualquier tipo de datos: codificación digital.
- Posibilidad de establecer prioridades distintas para distintos tipos de comunicación: calidad de servicio.
- Posibilidad de comunicación incluso con red saturada.

#### Conmutación de paquetes Técnicas de conmutación

#### Datagramas:

- cada paquete se trata independientemente, aunque pertenezcan a un mismo bloque de datos.
- los paquetes pueden llegar desordenados
- no hay que establecer conexión
- más fácil de implementar
- usado en redes heterogéneas (Internet)

#### Circuitos virtuales:

- primero se establece un camino fijo para el intercambio de los paquetes de una sesión y luego todos se envía por el
- emulan la redes de conmutación de circuitos
- los paquetes llegan de forma ordenada
- más fiable: calidad de servicio, reserva de recursos
- implementación más compleja
- usado en redes homogéneas de área amplia (WAN)

#### Evolución redes telefónicas

#### Localización de una llamada

- Operadoras: consulta a cada operadora de la red.
- Centrales analógicas automáticas: revisión manual de las conexiones en cada nodo.
- Centrales digitales: inmediato. Origen en cada paquete de datos.

#### Establecimiento de conexión

- Operadoras: costoso, requiere intervención directa del personal.
- Centrales analógicas automáticas: automático, requiere un tiempo apreciable.
- Centrales digitales: intercambio de paquetes de inicio de comunicación. Posible reserva de una parte de la capacidad de la red.

#### Comunicación

- Centrales analógicas: ocupación permanentemente del canal.
- Centrales digitales: sólo se ocupa el canal cuando hay datos que enviar.

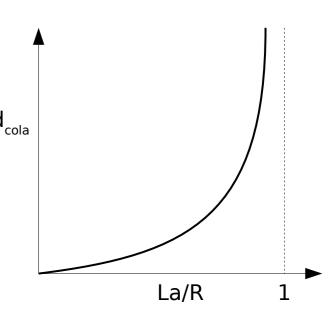
- Inundación (difusión)
- Estático
- Dinámico

- Enrutamiento por inundación (difusión):
  - Cada nodo repite el paquete hacia todos sus enlaces de modo que cada paquete alcanza todos los puntos de la red.
  - Debe existir algún mecanismo limitativo: un paquete se repite un número máximo de veces
  - Simple: fácil de implementar
  - Eficaz: se aprovechan varios caminos posibles
  - Bajo aprovechamiento: se emplean enlaces que no son necesarios
  - Peligro de saturación de la red: congestión

- Enrutamiento estático:
  - Cada nodo almacena una tabla de rutas fija (estática) que indica: destino -> enlace a usar
  - Soluciona problemas de saturación
  - Eficaz: configurable para mejor operación
  - Fácil de implementar
  - Difícil de mantener: configuración manual
  - Bajo aprovechamiento: no se adapta a las condiciones cambiantes de la red

- Enrutamiento dinámico:
  - Tablas de rutas generadas dinámicamente y automáticamente
  - Mejor aprovechamiento de la red
  - Adaptable automáticamente a fallos de la red
  - Fácil de mantener: configuración automática
  - Permite calidad de servicio: prioridad en función de contenidos, urgencia, etc.
  - Difícil de implementar: algoritmos de routing
  - Añade tráfico para operaciones de control: puede afectar a la saturación de la red

# Colas, retrasos y pérdidas


- Retraso de extremo a extremo
  - Tiempo empleado por un paquete en llegar desde el origen al destino a través, en general, de varios nodos y enlaces.
- Retraso nodal
  - Tiempo empleado por un paquete en pasar de un nodo a otro
- Hay 4 fuentes de retraso nodal
  - d<sub>proc</sub>: procesamiento nodal
    - Comprobación de errores, etc. Típicamente < 1ms</li>
  - d<sub>cola</sub>: retraso de cola
    - Espera en la cola antes de la transmisión
  - d<sub>trans</sub>: retraso de transmisión

$$d_{nodal} = d_{proc} + d_{cola} + d_{trans} + d_{prop}$$

- Tiempo en enviar los bits del paquete
- d<sub>prop</sub>: retraso de propagación
  - Tiempo que tarda la señal desde un nodo al otro.

#### Retraso de cola

- En cada nodo (router) los paquetes se encolan a la espera de ser transferidos.
  - Hay una cola de salida por cada enlace del nodo.
- Depende del nivel de "congestión" del nodo: cuántos paquetes tiene en la cola.
- Congestión
  - a: tasa de llegada de paquetes promedio.
  - L: longitud del paquete.
  - R: tasa de datos de salida máxima.
  - Si La < R: no congestión, d<sub>cola</sub> <<</li>
  - Si La ≤ R: no congestión, d<sub>cola</sub> >>
  - Si La > R: congestión, dcola → ∞



# Retrasos de transmisión y propagación

- Retraso de transmisión
  - Depende de:
    - R: tasa de transferencia (ancho de banda)
    - L: tamaño del paquete.
- Retraso de propagación
  - Depende de:
    - d: longitud del enlace físico.
    - s: velocidad de propagación de la señal en el medio.
- Tasa de transferencia de extremo a extremo
  - La menor de entre los enlaces en el camino (enlace cuello de botella).

$$d_{\rm trans} = L/R$$

$$d_{\text{prop}} = d/s$$

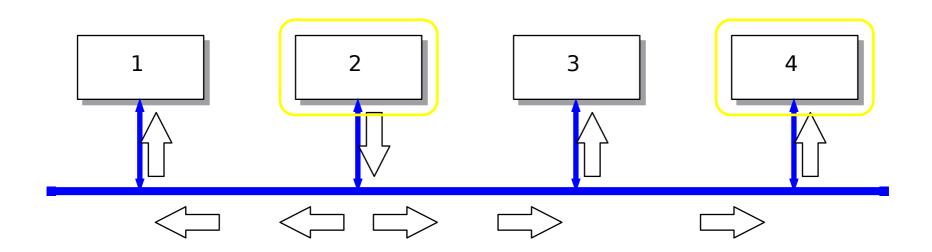
#### **Contenidos**

- Introducción
- Redes conmutadas
  - Conmutación de circuitos. Conmutación de paquetes. Enrutado
- Redes de área local: Ethernet
  - Topologías. Trama MAC. Acceso al medio

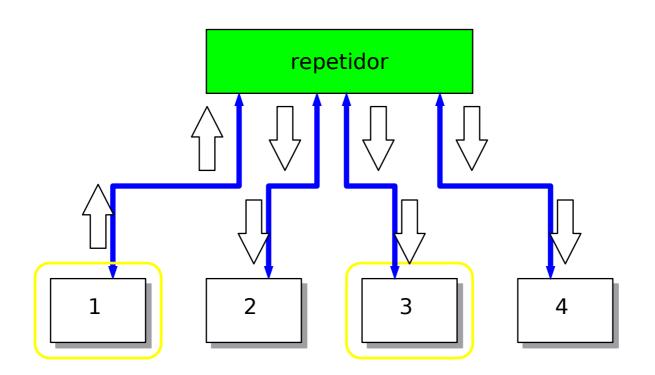
#### Redes de área local

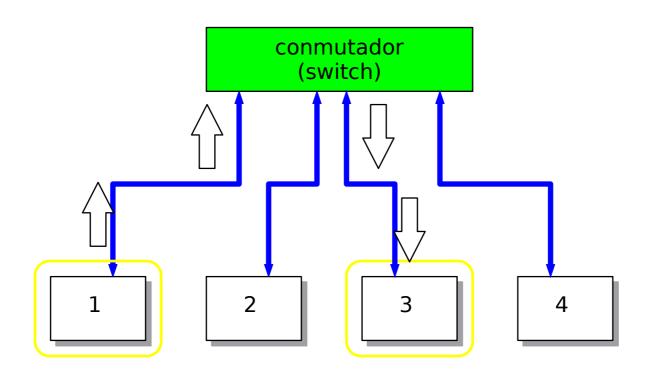
- Redes para áreas pequeñas: oficina, edificio, campus, etc.
- Destinadas a conexión de equipos informáticos: ordenadores, servidores, teminales, impresoras, etc.
- Transmisión de datos digitales en forma de paquetes.
- Arquitecturas normalizadas por las normas IEEE 802:
- Diferentes topologías:
  - bus, anillo, estrella, inalámbricas.
  - todas las topologías se comportan igual: conseguir que un paquete emitido por una estación llegue a todas las demás (difusión de paquetes).

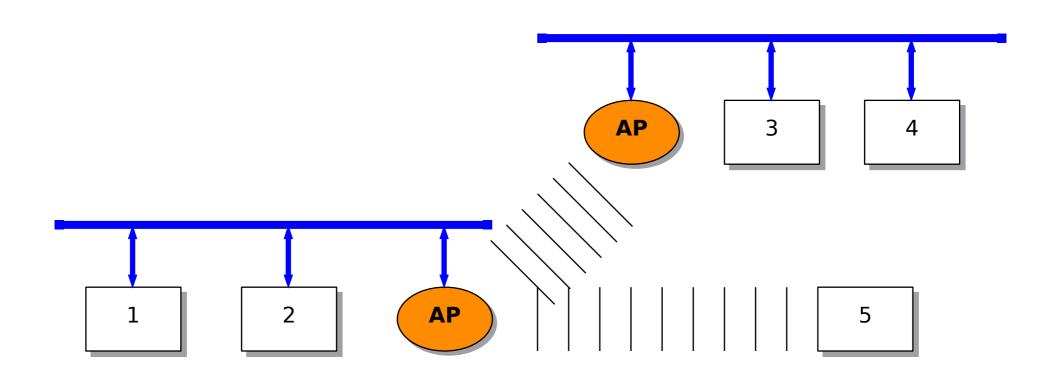
#### Ethernet. IEEE 802.3 CSMA/CD


- Carrier Sense, Multiple Access with Collission Detection
- Tecnología de red local más utilizada.
- Topologías:
  - tipo bus usando coaxial grueso o coaxial fino (obsoleto)
  - tipo estrella usando par trenzado o fibra óptica
- Acceso al medio por competición
- Direccionamiento físico mediante direcciones de 6 bytes (48bits). Ej: 00:D0:59:7B:97:8D
- Velocidades:

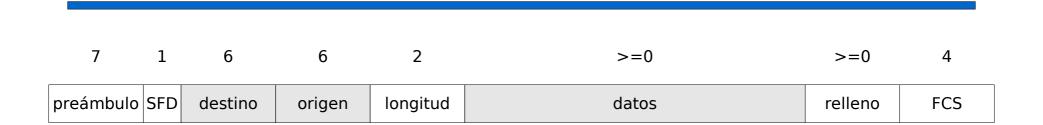
Ethernet clásico: 10Mbps


- Fast Ethernet: 100Mbps


- Gigabit Ethernet: 1000Mbps


- ...

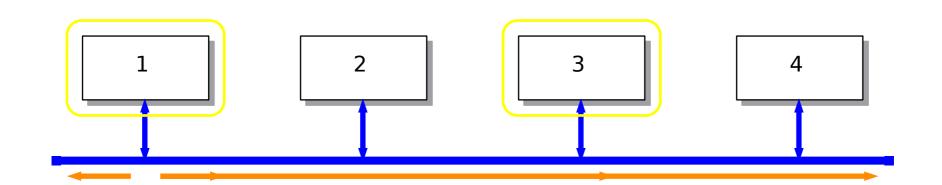



- La estación 2 ve el medio libre y envía un paquete con destino a 4
- El paquete se propaga por el medio y va llegando a todas las estaciones
- La estación 4 lee el paquete, el resto lo descartan








#### Ethernet. Formato de trama

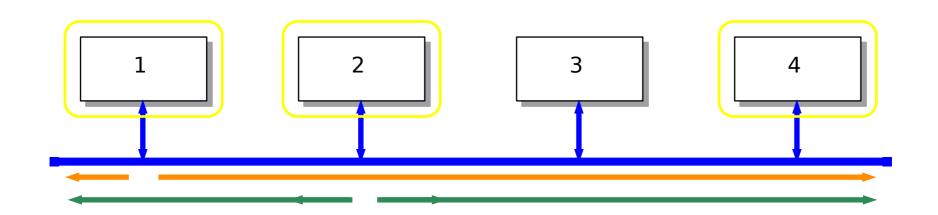


#### Campos de la trama:

- Preámbulo: avisa de que va a llegar una trama
- SFD (delimitador de comienzo de trama): marca el comienzo de una trama
- DA (dirección de destino): dirección física de destino de la trama
- SA (dirección de origen): dirección física de origen de la trama
- Longitud: longitud del campo de datos
- Datos: datos a transmitir. Habitualmente entre 0 y 1500 bytes
- Relleno: bytes a "0" para hacer que la trama tenga un tamaño mínimo de 64 bytes, necesario para la detección de colisiones.
- FCS (secuencia de comprobación de trama): código de detección de errores.

## Acceso al medio Caso simple



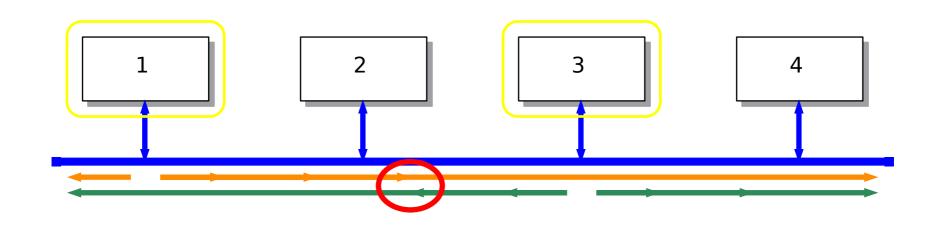

(1) emite una trama con destino a (3)

La trama llega a (2) y a (3), que reconoce su dirección

La trama llega al resto de la red. (3) sigue leyendo

(1) finaliza la transmisión. (3) ha leido toda la trama

# Acceso al medio Medio ocupado



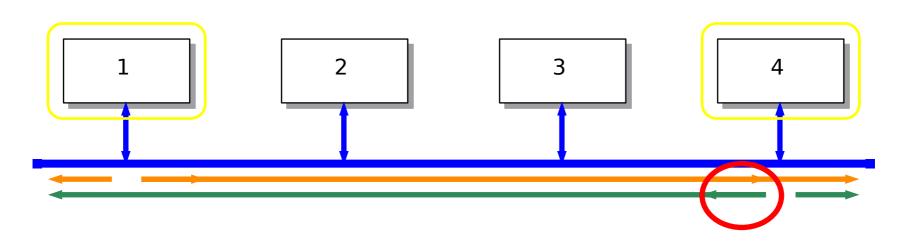

- (1) está emitiendo una trama. (2) quiere emitir pero el medio está ocupado
- (1) termina de emitir.
- (2) comienza cuando ve el medio libre

La trama llega a su destino (4)

(2) termina de emitir

#### Acceso al medio Colisión




- (1) ve el medio libre y comienza a emitir
- (3) ve el medio libre y comienza a emitir poco después

Las señales de (1) y (3) colisionan y se vuelven "ininteligibles"

La colisión se propaga a todo el segmento y es detectada.

(1) y (3) cancelan la emisión y esperan un tiempo para retransmitir

### Acceso al medio Colisión: caso más desfavorable



- (1) ve el medio libre y comienza a emitir
- (4) comienza a emitir instantes antes de la llegada de la trama de (1). Inmediatamente se produce una colisión (tiempo T)
- (1) y (4) continúan emitiendo hasta que la colisión llega a (1) (tiempo 2T). La colisión es detectada por (1).

Las estaciones dejan de emitir. Reintentarán la emisión más tarde. (Para detectar todas las colisiones, debe emitirse al menos un tiempo 2T)

# Acceso al medio Round-trip time

- Para que funcione el mecanismo de colisiones, una estación debe emitir durante un tiempo mínimo igual al tiempo máximo de ida y vuelta de la señal a lo largo de todo el segmento de red (round trip time)
- Se fija un round trip time máximo de 50 microsegundos.
  - a 10Mbps -> envío mínimo de 64bytes
- El tamaño máximo de la red local viene condicionado por el round trip time.