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Abstract

History has marked a large number of man endeavours towards building machines that are capable of
performing arithmetic operations more efficiently than he can do himself. These started with very primitive
instruments but evolved over the course of time due to the accumulative knowledge of man kind. In the
recent decades, many computer architectures exhibiting various design methodologies and computation
models have been developed. One of the most widely accepted of which is von-Neumann architecture.

The brilliant mathematician, John Louis von-Neumann (1903 - 1957) proposed - in 1945 - a model for
a general purpose computer that provides programmability and re-programmability thanks to a memory
structure that stores programs and data. This thesis introduces Micro6, A microprocessor that adopts von-
Neumann architecture and is implemented on FPGA. In addition to that, the thesis presents a software
development environment for Micro6.

Micro6 exhibits the characteristics of a RISC (Reduced Instruction Set Computer). It has a small set
of instructions and a limited number of addressing modes. Micro6 control unit follows the conventional
model as opposed to the microprogrammed one. Micro6 can perform arbitrary computations on integer
data but however, the size of the program is constrained by the size of the memory. An I/O Unit is attached
to Micro6 which facilitates basic I/O as well as DMA (Direct Memory Access) transactions.

Writing programs in high-level language like C is not supported by Micro6. However, this thesis intro-
duces an assembler, known as VAS, that supports the assembly language of Micro6. The assembler output
files can be used for both simulation and implementation purposes. VAS can be used to write programs
that exploit almost all the microprocessor hardware resources. This is very important in the development
stage.
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1. Computer architecture background

1.1. Classification of computer architectures

1.1.1. Von Neumann Machines

Perhaps the most significant characteristic of von-Neumann computer architecture is the use of a single
program counter (PC)1 to control the flow of executing programs. Program instructions are executed in the
same order as they appear in the main memory. Branching to subroutines or other programs is allowed.
However, a return to the calling routine is usually made available.

Generally we can call a computer a von-Neumann machine if it satisfies the following requirements:

1. It is built of 3 basic units:

a) a CPU: Central Processing Unit

b) a Main memory

c) an I/O unit

2. Its programs are stored in the main memory. A program can manipulate its data which can reside in
the main memory as well.

3. It executes its programs sequentially and one instruction is executed at any given time.

Harvard architecture

Harvarad architecture is a class of von-Neumann computer organization. Whereas in conventional von-
Neumann computers, the same set of buses (address and data) is used for both program instructions and
data, see figure 1.1 (a). In Harvard architecture,two separate sets of buses are used for program instructions
and data. In such architecture, program instructions and data appear to be accessed simultaneously, see
figure 1.1 (b).

1Also known as Instruction Counter in some literature.
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1. Computer architecture background

Instruction and
data

buses

CPU

Main Memory

I/O Unit

Instruction
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Data
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CPU

Main Memory
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Figure 1.1.: Von-Neumann architecture approaches

(a) Conventional von-Neumann. (b)Harvard architecture.

1.1.2. Non von-Neumann Machines
Von-Neumann computers are also known as SISD (Single Instruction stream, Single Data stream) since
only one program that operates on, necessarily, a single flow of data can run at any given time. According
to Flynn’s (1966) classification of computer architectures2, there are yet 3 other categories:

1. SIMD: Single Instruction stream, Multiple Data stream
SIMD computers are comprised of a number of PE’s (Processing Element) that run the same program
but they operate on different flows of data.

2. MISD: Multiple Instruction stream, Single Data stream
These computers employ several PE’s with different programs to operate on the same flow of data.

3. MIMD: Multiple Instruction stream, Multiple Data stream
As the name implies, there computers have more than one PE, each with running a different pro-
gram and running on a different flow of data. Computers that belong to this family are essentially
multiprocessors.

1.2. RISC machines
RISC stands for Reduced Instruction Set Computer. The term was coined in the early 1980s to refer to
computers with relatively simple ISA (Instrcution Set Architecture). However, there is not any exact defi-
nition for RISCs. A computer can qualify to be a RISC if it can meet most of the following characteristics:

2Flynn’s classification of computer architectures is based on a variety of characteristics, including number of processors, number of
programs that can be run simultaneously and memory structures.
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1. Computer architecture background

1. Instruction set is simple.

2. Instructions are of a uniform length.

3. Instruction set uses few instruction formats.

4. Little overlapping of instruction functionality.

5. Instruction set implements few addressing modes.

6. Few instructions move data to and from the main memory.

7. All operate instruction manipulate only data from the register file.

8. Instruction set supports a limited number of data types.

12



2. Micro6 specifications

Micro6 is a simple von-Neumann computer system. It is build of the 3 main units that characterize von-
Neumann machines. Micro6 provides two separate sets of buses for program instructions and data, hence
it implements the Harvard architecture. However, since Micro6 utilizes a single memory block, adopting
Harvard architecture does not alleviate von-Neumann bottleneck1 but it provides for instruction pipelining.
Micro6 meets all the properties of the RISC presented in section 1.2.

In this chapter, we will present Micro6 specifications. The first section demonstrates the instruction set
architecture (ISA). The majority of microprocessor designs start with specifying what the microprocessor
is expected to be able to do, which is translated into its ISA. Designers may decide to choose an instruction
set of an existing commercial microprocessor, so that they can make use of its software development
environments. i.e. assemblers, high-level language compilers, debuggers, etc. However, for Micro6 this
is not the case. It supports its own instruction set. Hence, an assembler has to be developed as a basic
software development environment, see chapter 7 Programming Micro6.

The next two sections, we follow a top-down approach to illustrate the system and CPU architectures
highlighting their sub-components and their functionalities.

2.1. Instruction Set Architecture ISA

Instruction Set Architecture (ISA) defines the microprocessor from a machine-language programming per-
spective, including the following:

• Instruction set

• Structure of the register file

• Addressing modes

• Data types and data representation

• Run-time operations (exceptions for instance)

This definition of the ISA makes the hardware structure and implementation details transparent to the
programmer.

2.1.1. Instruction set

The design of an instruction set or rather a good instruction set is a challenging task since there is not any
systematic way for achieving this goal. It is usually an iterative process that involves balancing different
contradicting factors in order to meet the microprocessor requirements in an optimum way.

Up to this point, instruction set design sounds hazy. In fact it is. However, there are a few properties that
an instruction set should meet to some extent. These are completeness, orthogonality, compatibility and
expandability.

1. Completeness
That is, the instruction set must provide an instruction (or a short sequence of instructions) to meet
all the functions specified in the microprocessor requirements.

1Von-Neumann bottleneck: The bandwidth (data transfer rate) between the CPU and memory is very small in comparison with the
amount of memory. This is due to the separation between the CPU and memory.
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2. Orthogonality
The instruction set does not include any unnecessary overlapping of the operations of individual
instructions.

3. Compatibility
In a computer family, new instruction sets should be compatible with previous ones. That is, pro-
grams that used to run on predecessor architectures should be able to run on the new ones.

4. Expandability
The instruction set provides means to expand the addressing space.

During the design of Micro6 instruction set, the compatibility and expandability properties were not taken
greatly into account. Because it is the first in its family and the addressing space can be extended later
probably by utilizing different techniques, implementing virtual memory and caching for instance.

The instruction set of Micro6 is complete to the extent that all fundamental operations can be performed
with single instructions. Orthogonality is also achieved since no two instructions perform the same opera-
tion.

The reader may have noticed that instruction set completeness and orthogonality are two contradicting
properties. Designers must make compromises to achieve design objectives and meet these two require-
ments with varying degrees.

Micro6 instruction set is explained in more detail in chapter 3.

2.1.2. Addressing modes

Micro6 supports 5 modes of addressing as follows:

1. Register-direct
Data is stored in the accumulator or a register of the register file2.

Instruction

DATA

Register

Figure 2.1.: Register-direct addressing mode

2. Register-indirect
The location of the data to be manipulated is stored in a register of the register file.

2Other registers in the design are made transparent to the user. Only the accumulator and the register file can be referenced by user’s
programs.
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Instruction Register

DATA

Figure 2.2.: Register-indirect addressing mode

3. Register-indexed
Similar to register-indirect but the memory address is expressed by the sum of the contents of a
general-purpose register and the contents of an index register.

Instruction

DATA

Index register

Register

+

Figure 2.3.: Register-indexed addressing mode

4. Stack-register
Data is stored in the stack segment of the main memory. A stack pointer is used to access data using
this addressing mode.

15



2. Micro6 specifications

Instruction Stack pointer

DATA

Stack segment

Figure 2.4.: Stack-register addressing mode

5. Immediate
Micro6 does not actually support this addressing mode in a direct manner. Since instructions utilizing
the immediate addressing mode are made up of at least 2 memory words: 1 for the instruction and
1 for the immediate data. In Micro6, all instruction occupy one memory word. To achieve this
objective, immediate addressing mode is effectively replaced by page-0 addressing scheme. That
is, all immediate data reside in the topmost page of the memory.

Immediate data must be declared as constants associated with symbols. Instructions can use these symbols
to reference immediate data. The symbol code is small so that the instruction and the symbol can fit in one
memory word. Refer to chapter 7 for more details about using this addressing mode.

Instruction

DATA

Memory Page-0

Symbol

Figure 2.5.: Immediate addressing mode

2.1.3. Register file

The register file is a small and fast intermediate storage medium, usually implemented inside the CPU. Data
in the register file is necessary for the operation of the ALU and the control unit. The size and function(s)
of the register file are critical design parameters.

Micro6 register file is comprised of 28 general-purpose registers, 3 index-registers and a memory-stack
pointer as shown in figure 2.6.
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R00

R01

R02

R27

IX0

IX1

IX2

STP

General purpose registers

Index registers

Stack pointer

{

32-bit

9-bit

Figure 2.6.: Micro6 register file

General-purpose registers:

These registers hold computation operands and results. Micro6 contains a relatively large number of
general-purpose registers. This approach slows down the operation of the microprocessor when multi-
tasking operating system is in use since most (if not all) the CPU current context needs to be saved when
a context change is encountered i.e. task switching. However, multi-tasking operating systems are not
supported by the current version of Micro6.

The second problem of large register files is obviously the size of the design in terms of silicon area.
A large register file is advantageous when running a program which operates on as many variables as the
register file can accommodate.

Index registers:

Index registers are basically used for register-indexed addressing mode. see section 2.1.2 Addressing
modes.

Memory-stack pointer:

This is a updown-counter. Its contents point to the next free location in the stack segment of the main
memory. The stack pointer and hence the stack operations are controlled directly by the Control Unit (see
chapter 5). Micro6 instruction set provides two instructions to push and pop data into and from the stack.

2.1.4. Data types

Signed integers

Integers range from -2147483648 to 2147483647. Negative numbers are represented by 2’s compliment.
The internal bit representation is shown in figure 2.7.
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Figure 2.7.: Internal representation of numbers

Unsigned integers

Integers range from 0 to 4294967295. The internal bit representation is shown in figure 2.7.

Composite data types

Aggregations of data of signed- or unsigned- integer types are allowed in software. Micro6 provides hard-
ware to easily manipulate arrays, using indexing for instance.

2.2. System architecture

Micro6 is comprised of the 3 sub-system that characterize a von-Neumann machine. These units communi-
cated among themselves using global (system-level) buses. Note, however, that the memory buses (address
and data) are shared by the CPU and I/O unit. The Memory Traffic Controller (see section 2.2.3) makes
sure that data collision is not allowed on these buses. All other buses are not shared, they are rather used to
connect two units.

Figure 2.8.: System architecture

2.2.1. Central Processing Unit (CPU)

The Central Processing Unit CPU is the heart of the microprocessor. The computation operations as well
as generating control signals to control the rest of the machine are generated in this unit. An overview of
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the CPU and its subunits is presented in section 2.3.

2.2.2. Main memory
People concerned with software development view the existence of the main memory as a great advantage
of the von-Neumann architecture. It provides the ability of running different programs on the same hard-
ware architecture and hence using the computer in different applications. To illustrate this point, let’s look
at an example of a computer system that does not use any memory (or rather any program memory). The
desk calculator is suitable for this purpose. You can use a desk calculator to perform arithmetic calcula-
tions but you can not change its functionality to perform word processing, for instance, without changing
its hardware circuitry.

Memory organization

Figure 2.9.: Memory organization

The main memory in Micro6 stores the program instructions, the data and the stack as shown in the figure
below.

1. Boot instructions: The first word (0x000) is a jump instruction to the first instruction in the program
(0x200) as specified in the second word (0x001).

2. Program constants and branches and subroutine addresses: This is the second part of page-0 and it
contains the constants declared in the program as well as labelled instructions which can be used for
branching or subroutine calls.

3. Program and Data segment: Contains the program instructions as they appear in the assembly pro-
gram listing. It also contains the data manipulated during the program run time.

4. Stack segment: This area holds the data in LIFO manner. It should be accessed only using push and
pop instructions. The pointer of this stack is R31 in the Register File.
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2. Micro6 specifications

Memory Cycles

Figure 2.10 shows the read and write memory operations. The signals involved are the following:

Figure 2.10.: Memory Cycles

clk: System clock

Wr: Write signal: Active high

Rd: Read signal: Active high

Addr: Address lines: 12-bits wide

Din: Memory data input: 32-bit wide

Dout: Memory data output: 32-bit wide

Memory handshaking signals

The handshaking between the main memory and other units is achieved with the memory Ready signal
(Rdy). When Rdy is high, it indicates that the memory has completed the requested operation and ready to
perform the next data transaction. Units accessing the memory will de-assert their Read or Write requests
as soon as (i.e. the next clock cycle) the Rdy signal is asserted. Figures 2.11 and 2.12 show the behavior of
the Rdy signal in both Write and Read operations respectively.
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Figure 2.11.: Memory handshaking - Write operation

Figure 2.12.: Memory handshaking - Read operation

Limitations of Micro6 memory organization

1. Micro6 does not provide any hardware means to protect the contents of any memory location against
accident changes.

2. The maximum size of the program is variable and it depends on the initial amount of data it requires.
The maximum possible program size assuming no initial data = size of the program and data segment
= 3k.

3. The maximum number of constants + labelled instructions = 510.

2.2.3. Memory traffic controller
As mentioned above, Micro6 is a Harvard machine since there are two pathways for accessing the main
memory, one for instructions and the second for data. Conventionally, two units can not access the same
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memory simultaneously unless the memory has two ports. Arbitration can be used as an alternative. In
such case, the two units do not actually access the memory simultaneously but each unit feels as if it has
exclusive access to memory. Mico6 Memory Traffic Controller arbitrates memory access between 3 master
units as listed below in the order of their relative priorities:

1. Fetch unit: CPU sub-system (see section 5.2)

2. Data path: CPU sub-system (see chapter 4)

3. I/O Unit (see chapter 6)

The Memory Traffic Controller grants memory access to the competing units according to their priorities.
However, the order shown above is adopted in the case when no unit is actively accessing the memory.
When a unit is actively accessing the memory, it retains control until it is finished with all the memory
transactions it wishes to make. This means that the active unit assumes the highest priority.

The table below explains the priority scheme in detail.

Active Unit
Priority Fetch Unit Data Path I/O Unit None

1 Fetch Unit Data Path I/O Unit Fetch Unit
2 Data Path Fetch Unit Fetch Unit Data Path
3 I/O Unit I/O Unit Data Path I/O Unit

Table 2.1.: Memory Traffic Controller - Priority scheme

The Memory Traffic Controller can be thought of as a set of multiplexers controlled by a finite state
machine. The current state of the FSM selects the input port of each multiplexer. However, the Rdy
(memory ready) signal is treated in a special way. It is propagated from the memory to the active unit only.
Other units receive a low Rdy signals.

22



2. Micro6 specifications

Figure 2.13.: Memory traffic controller
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2.3. CPU architecture

ALU

Register file

B

A

in

IR

Fetch Unit

MAR PCMBR

Control Unit

Stack

out

in

Data
Bus

Memory
instruction

bus

Memory data
bus

Memory data
address bus

Memory
instruction

address bus

Figure 2.14.: CPU architecture

The CPU as shown in figure 2.14 is built of different components as listed below:

1. Register File: Holds intermediate computation data. It is explained in details in subsection 2.1.3.

2. ALU: Arithmetic and Logic Unit. It is explained in detail in section 4.2.

3. Fetch Unit: Fetches instructions from the memory. It is explained in detail in section 5.2.

4. IR: The Instruction Register: It holds the current instruction. 32-bit register.

5. Control Unit: It consists of the Decode Unit and the Execute Unit. Those are explained in detail in
chapter 5.

6. PC: Program Counter3: 12-bit up-counter: It holds the address of the next instruction to be fetched.

7. Stack: Stores the contents of the Program Counter PC during subroutine calls and restores it when
returning from subroutines. The Stack is explained in detail in section 5.5.

3In some literature, the existence of the PC is a significant feature of the von-Neumann architecture.
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2. Micro6 specifications

8. MAR: Memory Address Register: 12-bit registers that holds the address of the memory location to
be accessed by the Data Path. The MAR is loaded from one or two registers of the Register File
when executing load (LD and LDX but not LDM) and store (ST, STX) instructions4. However, the
MAR is loaded directly from the Control Unit when executing the LDM.

9. MBR: Memory Buffer Register: 32-bit registers that holds the data to be written or read to and from
the main memory. It also holds the data to be transmitted or received to and from the I/O Unit.

10. Data Bus: 32-bit bus. It is implemented as a multiplexer since internal tri-state signals are not
allowed in the majority of FPGA architectures. The Data Bus has 4 inputs: the ALU, the Stack, the
Control Unit and the MBR. However, the term “Data Bus” does not explain its function completely.
The Data Bus can carry memory addresses as well.

4For more information about these instructions, refer to chapter 3.
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3. Instruction set

3.1. Operate group
This group includes the instructions required to perform arithmetic and logic operations on data stored in
one of the registers of the register file or the accumulator. Since Micro6 is strictly LOAD-STORE machine,
instructions from the operate group use only register-direct addressing mode.

All instructions belonging to this group are performed by the ALU (Arithmetic and Logic Unit) but by
definition, the implementation details are masked as long as the instruction set is concerned. Details of
implementation are presented in section 4.2.

3.1.1. Arithmetic operations

Mnemonic Operand Result Operation
Addition ADD 2 signed integers signed integer A + B
Subtraction SUB 2 signed integers signed integer A - B
Multiplication MUL 2 signed integers signed integer A x B
Integer Division DIV 2 signed integers signed integer A / B
Remainder REM 2 signed integers signed integer A rem B
Increment INC 1 signed integer signed integer A + 1
Decrement DEC 1 signed integer signed integer A - 1

Table 3.1.: Arithmetic operations

3.1.2. Logic operations

Mnemonic Operand Result Operation
Logic AND AND 2 unsigned integers unsigned integer A and B
Logic OR OR 2 unsigned integers unsigned integer A or B
Logic NOT NOT 2 unsigned integers unsigned integer not A
Logic XOR XOR 2 unsigned integers unsigned integer A xor B
Compare CMP 2 unsigned integers unsigned integer A - B
Reset ZRO 1 unsigned integer unsigned integer A = 0

Table 3.2.: Logic operations

Note The difference between the compare operation and the subtraction operation is that in the former
only the condition flags are updated, the computation result is not saved in the Accumulator 1

Arithmetic and logic instructions format

Micro6 assembly language supports instructions with 1 or 2 operands. In addition to that, the programmer
can choose whether the computation result is stored in one of the registers of the Register File by indicating
the destination register in the instruction or whether the result is not stored by simply not indicating any

1See section 4.2 for more details about the ALU and its subcomponents.
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3. Instruction set

result registers. However, in both cases, the result is stored in the Accumulator which retains its contents
until the next operation is executed.

Example:

ADD R1 R2 R3; -- Adds the contents of R1 and R2 and stores the result in
R3.
ADD R1 R2; -- Adds the contents of R1 and R2 but does not store the result
in any register.
This is also possible with single operand instructions. However, in this case, the result is stored back in
operand register
INC R1 R3; -- Increments the contents of R1 and stores the result in R3
INC R1; -- Increments the contents of R1 and updates them.

3.1.3. Shift and rotate operations

Mnemonic Operand Result Operation
Arithm. shift right SRA 1 signed, 1 unsigned signed integer A > > B; fig. 3.1
Arithm. shift left SLA 1 signed, 1 unsigned signed integer A < < B; fig.3.2
Logic shift right SRL 2 unsigned integers unsigned integer A > > B; fig. 3.3
Logic shift left SLL 2 unsigned integers unsigned integer A < < B; fig. 3.4
Rotate right RTR 2 unsigned integers unsigned integer fig. 3.5
Rotate left RTL 1 unsigned integer unsigned integer fig. 3.6

Table 3.3.: Shift and rotate operations

these bits are lost

sign is extended

Figure 3.1.: Arithmetic shift right

Shift and rotate instructions format:

Micro6 supports barrel shifting and rotating operations. For this purpose, the programmer must indicate
the Shift Count in the instruction. The Shift Count can range from 1 to 31 (0 is basically accepted but it
does not cause any shifting or rotating).

Shift Counts can be indicated in one of two possible ways:

1. Explicitly indicate the Shift Count as an integer value preceded by ’#’

2. Indicate a register whose 5 least significant bits are the Shift Count.

Remember that the same remark about storing or not storing the result applies for shift and rotate instruc-
tions as well as for arithmetic and logic ones.
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sign bit is
reserved

0 0 0

these bits are lost

Figure 3.2.: Arithmetic shift left

0 0 0

these bits are lost

Figure 3.3.: Logic shift right

Examples

Assume that R2 = “1100 1010 0011 0101 1111 0000 1100 1110”
If R2 is used as the Shift Count Register, then the Shift Count would be “0 1110”, i.e. decimal 14.
SLA R1 R2 R3; -- Arithmetic shift left of the contents of R1 by 14 and store
the result in R3
SLA R1 R2; -- like the above instruction but without saving the result.
SLA R1 #6; -- Arithmetic shift left of the contents of R1 by 6 wihout storing
the result.

3.2. Data transfer group

This group includes the instructions required to move data to and from the main memory. Instructions of
this group may utilize all supported addressing modes.

3.2.1. Copy Register CPR

CPR copies the contents of one of the Register File registers into another. In addition to that, the source
or the destination register can be the Accumulator. Executing this instruction makes use of the ALU. In
this way, no additional hardware resources must be provided inside the Register File to facilitate the data
transfer between two registers. Obviously, this instruction uses only the register direct addressing mode.

Example:

CPR R1 R2; -- Copies the contents of R1 into R2
CPR ACC R3; -- Copies the contents of the Accumulator into R3
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0 0 0

these bits are lost

Figure 3.4.: Logic shift left

Figure 3.5.: Rotate right

3.2.2. Load from memory LD, LDM and LDX

In order to be processed, data must be loaded from the main memory into the CPU. For this purpose, a
range of instructions is provided to support different addressing modes. The destination of the loaded data
is the Register File. This emphasizes the important role of the Register File as a temporary storage element.

LD

LD is the basic data loading instruction. Executing it results in moving data from the memory location
pointed to by the contents of the source register into the destination register.

Example:

LD R1 R2; -- Loads data from the memory location pointed to by R1 into register
R2.

Note: Since the width of the memory word is 32 bits, loading registers R28, R29, R30 (the Index
Registers) and R31 (the Stack Pointer) whose width is 9 bits will result in moving the 9 least significant
bits only. The hardware circuitry allows such transactions; however, loading the Stack Pointer is not advised
because it may cause improper operation conditions.
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Figure 3.6.: Rotate left

LDM

LDM is the work around loading immediate data. All immediate data or constants from the programming
point of view are stored in the first memory page (512 locations). LDM instruction word contains the
address of the constant which is 9 bits wide. In this way, LDM takes one memory word in addition to
the memory word in which the immediate data is stored but fetching this instruction takes one fetch cycle.
Calling the data from the first memory page is performed by the Execute Unit which utilizes a separate
path to the memory.

Example:

.M1 #1234; -- This statement declares the constant M1 and assigns it the
value 1234

Note here that the programmer does not provide any information of the physical location of the constants
in the program. The assembler does that and generates the 9-bit address for the LDM instructions that ref-
erence to this particular constant.

LDM M1 R0; -- Causes the constant M1 (1234) to be loaded into register
R0.

The above two statements are equivalent to the statement below assuming the LDI stands for LoaDing
Immediate data:

LDI 1234 R0

LDX

This version of load instructions uses the register indexed addressing mode. Before executing this instruc-
tion, the programmer must make sure that the index register he intends to use is loaded with a valid value.
The address of the data to be loaded is the sum of the contents of the index register and the source register.
The data is loaded into the destination register.
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Example

LDX R0 I1 R16; -- R0 is the source register, I1 is the index register 2 and
R16 is the destination register.

The data in the memory location R0 + I1 is loaded into register R16.
LDX is useful when loading elements of an array structure. The index register is not modified auto-

matically. The programmer must provide an instruction to increment or decrement the contents of the
index register before loading the next array element. This gives flexibility to the programmer to manipulate
ascending and descending array indices.

3.2.3. Storing data in the main memory ST, STX

During processing of data, results are stored in the Register File. Due to the limited size of the Register
File, data has to be stored in the main memory.

ST

This version uses the register indirect addressing mode. The contents of the source register are simply
stored in the memory location pointed to by the destination register.

Example:

ST R1 R2; -- The contents of R1 are stored in the memory location whose
address is the contents of R2

STX

STX makes use of the indexed register addressing mode. The address of the destination memory location
is the sum of the contents of an Index Register and the destination register.

Example:

STX R7 I2 R9; -- The contents of R7 are stored in the memory location whose
address is (I2 + R9)

STX is useful when storing elements of an array structure. The index register is not modified auto-
matically. The programmer must provide an instruction to increment or decrement the contents of the
index register before storing the next array element. This gives flexibility to the programmer to manipulate
ascending and descending array indices.

3.3. Program control group

These are the instructions, which control the flow of programs. Conditional branch/jump instructions read
the ALU condition flags, which are set by previous, operate instructions.

3.3.1. Branches

Branches in a program (or subroutine) cause the program flow to be routed to a different part of the program
according to a condition. In terms of hardware, a branch involves loading the Program Counter PC with
the address of the target instruction. Executing the program instruction after modifying the PC continues
to be sequential, i.e. the PC is incremented after fetching each instruction.

2I0 is R28, I1 is R29 and I2 is R30 but the assembler VAS accepts referencing the index
register with Ix only. Using Rx notation generates an error.
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3.3.2. Subroutines

Calling a subroutine is similar to a branch. The difference is that subroutines must return to the calling
program (or subroutine in case of nested subroutine calls). In hardware, this involves pushing the current
contents of the Program Counter PC into the hardware Stack. Micro6 Stack is 16-slots deep which allows
nesting up to 16 subroutine calls.

3.3.3. Supported conditions

Micro6 assembly language and hardware resources support the following range of conditions to be use
with branches or subroutine calls:

Condition Abbreviation NEG OVF ZRO
1 Equal (zero) EQ X X 1
2 Not Equal NQ X X 0
3 Greater than (positive) GT 0 X 0
4 Greater than or equal (nonnegative) GE 0 X X
5 Less than LT 1 X 0
6 Overflow V X 1 X
7 Not overflow NV X 0 X

Table 3.4.: Supported conditions

The assembler generates a 6-bit signature of the condition mentioned in the instruction. This 6-bit
signature is referred to as the Condition Mask. The Control Unit uses the Condition Mask together with
actual status of the ALU Condition Flags to determine the success or failure of the encountered branch
instruction or subroutine call. The effective target addresses of these labels are calculated by the assembler
and included in the branch instructions or subroutine calls.

Bit Explanation
PN The expected polarity of the NEG flag
PV The expected polarity of the OVF flag
PZ The expected polarity of the ZRO flag
CN Check the NEG flag
CV Check the OVF flag
CZ Check the ZRO flag

Table 3.5.: Condition Mask

Condition PN PV PZ CN CV CZ
EQ 0 0 1 0 0 1
NQ 0 0 0 0 0 1
GT 0 0 0 1 0 1
GE 0 0 0 1 0 1
LT 1 0 0 1 0 1
V 0 1 0 0 1 0

NV 0 0 0 0 1 0

Table 3.6.: Condition Mask for the supported conditions
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Figure 3.7.: Condition Checking Circuit

Example:

$Label:
ADD R1 R2
...

3.3.4. Unconditional branch instruction BRA

This instruction always succeeds and causes a change in the program flow as explained in subsection 3.3.1.

Example:

BRA L1; -- L1 is a label of a branch in the program

3.3.5. Unconditional jump to subroutine instruction JSR

This instruction always succeeds and causes a change in the program flow as explained in subsection 3.3.2.

Example:

JSR S1; -- S1 is a label of a subroutine

3.3.6. Conditional branch instructions BEQ, BNQ, BGT, BLT, BGE, BV and
BNV

3.3.7. Conditional jump to subroutine instructions JEQ, JNQ, JGT, JLT,
JGE, JV and JNV

3.3.8. Return from subroutine instruction RTN

Executing RTN causes the program flow to be restored to the original flow the program has taken before the
subroutine was called. This effectively means popping a value from the hardware Stack into the Program
Counter.

33



3. Instruction set

Example:

RTN; -- Terminates the current (innermost, in case of nested subroutine
calls) subroutine and steers the program execution back to the calling subroutine.

3.3.9. End of program instruction END
This instruction terminates the program and causes the microprocessor to halt indefinitely (until it is reset
again). In case this instruction is missing, the Fetch Unit continues to fetch memory words after the last
program instruction word. This leads to undetermined operation.

Example:

END;

3.3.10. Null instruction NLL
This instruction causes the microprocessor to do nothing. It can be useful in some applications.

Example:

NLL;

3.4. I/O instructions
These are explained in detail in chapter 6.
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4. Data path

The data path of Micro6 is where the data is manipulated. It consists of the logic circuits necessary for
performing different operations on the data. It also consists of the registers used to hold intermediate
computation data and results.

4.1. Register file

The Register File of Micro6 is explained in detail in subsection 2.1.3.

4.2. ALU

Micro6 ALU is built of a combinatinoal logic core and an Accumulator to hold the computation results.

Figure 4.1.: ALU

4.2.1. ALU operations

The operations supported by Micro6 ALU are the arithmetic, logic and shift operations explained in section
3.1.
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4.2.2. ALU operands
The combinational logic core of the ALU receives one or two operands depending on the operation to be
performed. An operand can be either one of the following:

1. One of the Register File registers: indicated by Rx in the instruction. Where x is a number from 0 to
31.

2. The Accumulator: indicated by ACC in the instruction.

3. Shift Count (for the shifter only)

4.2.3. ALU computation result
As mentioned before, the ALU output is stored in the ACC before further manipulation or routing of the
data occurs. The ALU updates 3 Condition Flags according to its operation and result.

Flag Condition
NEG Negative The result is negative
OVF Overflow The result exceeds the representation range of 32-bit signed number
ZRO Zero The result is zero

Table 4.1.: Condition Flags

Updating the Condition Flags or not updating them depends on the operation performed. This is to insure
that Condition Flags update is associated with computation operations only. That is, Condition Flags are
not updated during data transfer operation through the ALU for instance.

4.2.4. ALU control
The ALU receives several control signals from the Control Unit as follows:

1. ALUSel (ALU Select): An unclocked signal that selects which operation to be performed. Possible
values are the range of operations supported by the ALU.

2. ACCEn (Accumulator Enable): A clocked signal to enable the Accumulator ACC when the operation
has been completed.

3. CFEn (Condition Flags Enable): A clocked signal to enable the Condition Flags CF when the com-
putation operation has been completed.

4. AACC (A is ACC): An uncloced signal that determines whether the left operand is a register or the
ACC.

5. BACC (B is ACC): An uncloced signal that determines whether the right operand is a register or the
ACC.

6. ShiftCntSrc (Shift Count Source)(for the shifter only): An unclocked signals that determines the
source of the shift count. It could be either the B input of the Shift Count input.
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5. Control unit

5.1. Structure and pipelining

The control unit of Micro6 can be split into 3 sub-units: fetch unit, decode unit and execute unit. The
individual sub-units will be explained briefly in the next sections.

Fetch
Unit

Execute
Unit

Decode
Unit

Control Unit
outputs

Decode
bundle

Execute
bundle

Instruction
word

Instruction
word
from

memory

clock

Figure 5.1.: Control unit structure

Micro6 provides for instruction pipelining. The pipeline is composed of 2 stages:

1. Fetching the instruction

2. Decoding and executing the instruction

The pipeline of Micro6 is one slot long only. This means that during decoding and executing a given
instruction, the fetch unit should be busy fetching the next to next instruction from memory.

Implementing a longer pipeline for Micro6 would not be efficient because they exhibit significant branch
penalty. When a branch of jump instruction is encountered, the pipeline has to be cleared (flushed) and
the first instruction on the branch subroutine be pushed to the top of the pipeline. Pushing an instruction
through the entire pipeline takes as many clock cycles as the number of pipeline slots. Unfortunately, the
branch penalty is inevitable and it is equal to the length of the pipeline. In Micro6, the branch penalty is
limited to 1 clock cycle.

5.2. Fetch unit

The Fetch Unit fetches instructions from the memory. The Program Counter holds the address of the
instruction to be fetched. The Fetch Unit is implemented as a finite state machine FSM. It halts when
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text text
Fetch Decode Execute

Stage 1 Stage 2

Figure 5.2.: Instruction pipeline

no instructions are needed to be fetched, this is the case when the Instruction Register IR holds the next
instruction and the Execute Unit is busy with the current one.

Figure 5.3 shows the state diagram of the Fetch Unit FSM. In this figure, a signal name means that this
signal is asserted (active).

Figure 5.4 shows the interface lines between the Fetch Unit, the Execute Unit, Memory and Program
Counter PC. The signals shown in the figure are:

memAddr: Memory address lines

memData: Memory data output

memReady: Memory Ready signal

memRd: Memory Read signal

IR: Instruction Register output

vldInstr: A one-clock wide pulse indicates that the IR lines carry Valid Instruction

readInstr: (Read Instruction): A one-clock wide pulse issued by the Execute Unit in order to request
fetching the next instruction.
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Figure 5.3.: Fetch Unit state diagram

Figure 5.4.: Fetch Unit Interfaces

5.3. Decode unit

The Decode Unit is a combinational logic circuit. It decodes the instructions by generating the Decode
Bundle which consists of unclocked control signals and additional decoding signals to the Execute Unit.

39



5. Control unit

• The unclocked signals are those which don’t change during the instruction execution cycles.

• The additional decoding signals are those which are passed to the Execute Unit. The Execute Unit
uses them to generate clocked (synchorizing) signals to the different parts of the microprocessor.

5.4. Execute unit
The Execute Unit is a relatively large FSM (67 states). It is driven by the decoding signals from the Decode
Unit and it outputs the signals that control the operation of the rest of the microprocessor components.

5.5. Stack
This is the hardware Stack. It is different from the stack segment in the main memory in that the former
is implemented in a set of registers inside the CPU. It also uses another stack pointer. This stack is used
to store the current contents of the Program Counter PC when a subroutine call is encountered and restore
them when returning from the subroutine so that the program can resume its original flow. The user does
not have any access to this stack.

Micro6 Stack is built of 16 9-bit slots and a 4-bit updown counter. A simple FSM controls pushing and
popping data to and from the stack. The operation of Micro6 Stack follows the classical stack operation as
explained below:

Pushing data into the stack:

• First clock cycle: Storing the input data in the stack slot pointed to by the Stack Pointer.

• Second clock cycle: Incrementing the Stack Pointer.

Popping data from the stack:

• First clock cycle: Decrementing the Stack Pointer.

• Second clock cycle: Reading the contents of the stack slot pointed to by the Stack Pointer.
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Figure 5.5.: Stack

41



6. I/O unit

Micro6 I/O unit performs two primary functions. The first of which is managing data transfer between the
CPU and the attached I/O devices. This function will be referred to as Basic I/O in the remainder of this
book. The second primary function is facilitating Direct Access Memory DMA. Micro6 I/O unit makes
it possible to transfer blocks of data from the main memory to the I/O devices and in the other direction
without any CPU intervention.

Micro6 assembly language provides 4 instructions for all possible I/O operations as will be explained
shortly.

The data width of external buses connected to Micro6 is 8 bits. The reason is that the majority of I/O
devices and adaptors expect 8 bit communication paths with the CPU. For example, Intel Programmable
Parallel Interface PPI 8255 contains 4 registers (3 data, 1 control) each is 8 bits wide. It also has 3 8-
bit I/O ports. Serial I/O devices usually provide 8-bit interface with the CPU. For example Universal
Asynchronous Receiver-Transmitters UARTs.

Micro6 allows receiving and transmitting 8-bit data as well as 32-bit data. 8-bit data communication
is straightforward whereas 32-bit data communication involves breaking the transmitted data into 4 bytes
or assembling 4 received bytes to build a 32-bits word. The process of breaking and assembling data is
performed within the I/O unit without any intervention from the CPU. Having the I/O unit to perform this
process independently requires a handshaking protocol with the I/O devices to insure proper data transfer
and avoid data collision. The handshaking protocol uses two ready signals. Depending on the particular
I/O device, none, 1 or both of the ready signals are utilized.

6.1. I/O Instructions

There are 4 instructions associated with I/O operations because Micro6 I/O Unit transmits and receives
data in two different widths. The I/O instructions are as follows:

1. Input Byte INB: Receive a byte from an I/O device

2. Input Word (32-bit) INW: Receive a word from an I/O device.

3. Output Byte OUB: Transmit a byte to an I/O device.

4. Output Word (32-bit) OUW: Transmit a word to an I/O device.

The general format of I/O Instructions is

OPC DEV_ID [ SRC | DST ]

Where OPC is one of the opcodes shown above, DEV_ID is the Device ID (an identifier from D0 to
D63), SRC is the source register in case of Output operations and DST is the destination register in case of
Input operations. SRC and DST can be any of the registers of the Register File (subsection 2.1.3).

6.2. Basic I/O

Basic I/O means simply transmitting or receiving a byte or a word to or from an I/O device. The basic unit
is always a byte. Before transmitting or receiving a byte, the I/O Unit makes sure that the I/O device men-
tioned in the instruction is ready for the transaction. This is indicated by high Pre-transaction Ready signal
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(pre-ready). I/O Unit waits until the I/O device indicates the completion of the transaction by asserting the
Post-transaction Ready signal (post-ready)1.

Word transaction is performed as if they were 4 byte transactions.
When the transaction is complete (indicated by the I/O device), the I/O Unit declares this to the CPU by

asserting the Ready signal (see subsection 6.4.1).

6.3. Direct Memory Access DMA
The I/O Unit dedicates 3 registers for DMA operations as shown in table 6.1 . User programs write values
into these registers in exactly the same manner as if they were I/O devices. However, when DMA registers
are selected, I/O instructions are interpreted in a different way. For example, writing and reading to the
Starting Address Register SAR are equivalent; both operations effectively write into that register. The same
applies for the Device ID Register DIR. The DMA operation is initiated when the Burst Length Register
BLR is loaded. The direction of the transaction and width of the transaction data is determined by the
opcode of the instruction that loads the BLR.

Register Description Instruction Effect
SAR Starting Address Register INW D62 R0; and OUW D62 R0; SAR <- R0
DIR Device ID Register INB D62 R1; and OUB D62 R1; DIR <- R0
BLR Burst Length Register See table 6.2

Table 6.1.: DMA Registers

Instruction Effect
INB D63 R2; BLR <- R2 and start receiving a burst of bytes
INW D63 R2; BLR <- R2 and start receiving a burst of words
OUB D63 R2; BLR <- R2 and start transmitting a burst of bytes
OUW D63 R2; BLR <- R2 and start transmitting a burst of words

Table 6.2.: BLR operations

6.3.1. Loading the Starting Address Register SAR
You load the SAR by writing (or reading) a WORD into device 62. An example is shown below assuming
that the starting address initially resides in R1

OUW D62 R1 or

INW D62 R1

6.3.2. Loading the Device ID Register DIR
Note that loading the DIR is associated only with DMA operations. In Basic I/O operation, you specify the
device ID in the instruction.

You load the DIR by writing (or reading) a BYTE into device 62. An example is shown below assuming
that the device ID initially resides in R1

OUB D62 R1 or

INB D62 R1
1Pre-transaction Ready and Post-transaction signals will be explained in detail in subsection 6.4.2.
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6.3.3. Loading the Burst Length Register BLR and initiating DMA
operations

Loading the BLR initiates the DMA operation. So, you need to specify what kind of operation is required
by using the appropriate I/O instruction as shown in the examples below. All the examples assume that the
burst length initially resides in R1.

• Receiving a block of bytes: INB D63 R1

• Receiving a block of words: INW D63 R1

• Transmitting a block of bytes: OUB D63 R1

• Transmitting a block of words: OUW D63 R1

6.4. I/O Unit interfaces

6.4.1. CPU Interface

The I/O Unit is connected to the CPU by two sets of buses:

1. 2 data buses: 1 for input data from the CPU and 1 for output data to the CPU. In the CPU end, these
buses are connected to the MBR (Memory Buffer Register).

2. Control lines: carry instructions from the CPU as well as the address of the I/O device.Table 6.3
shows the CPU-I/O-Unit control lines in detail.

Signal Direction Function
rd in Read operation
wr in Write operation
ready out I/O operation is complete
wordByte in Data is 32-bit words or 8-bit bytes
deviceID in Device ID

Table 6.3.: Control Lines from the CPU to the I/O Unit

6.4.2. External devices interface

External devices handshaking

External devices can use one or two lines for handshaking in order to guarantee the validity of data transfers:

Rdy_pre: Indicates that the selected I/O device is ready to initiate a data transaction.

Rdy_post: Indicates that the selected I/O device has successfully finished a data transaction.

External devices interface lines

Figure 6.1 shows an I/O external device connected to the I/O Unit. The example I/O device is able to input
and output data and it uses both Rdy_pre and Rdy_post handshaking lines2. Explanation of the shown
signals is given in table 6.4.

2This example is only for demonstration. Usually, I/O devices perform either input or output operations. They rarely perform both
and in that case, they are looked at as 2 separate I/O devices, one for input and the other for output data.
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6. I/O unit

Figure 6.1.: External devices interface

Signal Width Description
ExtDin 8 Data bus from the external devices to the I/O Unit

ExtDout 8 Data bus from the I/O Unit to the external devices
ExtRd 1 A control line that instructs the external device to perform a read (input) operation
ExtWr 1 A control line that instructs the external device to perform a write (output) operation

Device-ID 6 External device selection lines
Rdy_pre 1 Handshaking line
Rdy_post 1 Handshaking line

CS 1 Chip Select

Table 6.4.: External devices interface

6.4.3. Memory interface

The I/O Unit communicates with the Main Memory through the Memory Traffic Controller utilizing the
regular memory access interface.

6.5. UART

To demonstrate the I/O functions of Micro6, a UART is attached to it. The UART design is available for
download from the OpenCores website (www.opencores.org). However, since Micro6 I/O Unit does not
support interrupts, the interrupts were removed from the original downloaded UART files. In addition to
that the baud rate generator was modified to support 115.200 Kbps baud rate.

6.5.1. UART functions:

The UART can perform either of 3 I/O functions as shown in table 6.5. For this reason, the I/O Unit sees
the UART as 3 I/O devices.
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Function Device
1 Receiving data D0
2 Transmitting data D1
3 Reporting its status D2

Table 6.5.: UART I/O functions

6.5.2. Attaching the UART to Micro6 I/O Unit

The UART is attached to Micro6 U/O Unit as shown in figure 6.2. The signals shown in the figure are
explained below:

ExtRd and ExtWr I/O Unit Read and Write signals respectively (active high)

nRD and nWr UART Read and Write signals respectively (active low)

ExtDin(0)..(2) I/O Unit data input buses (connected to a multiplexer)

Dout UART data output bus

ExtDout I/O Unit data output bus

Din UART data input bus

cs(0)..(2) I/O Unit chip select signals (output from a decoder)

cs UART chip select input

addr(0) and addr(1) UART address input

pre_rdy(0) and pre_rdy(1) I/O Unit pre_rdy signals (connected to a multiplexer)

Rdy UART Receiver Ready signal. It indicates that the UART is ready to perform a Receive operation

TBUFE UART Transmit Buffer Empty signal. It indicates that the UART is ready to perform a Transmit
operation
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6. I/O unit

Figure 6.2.: UART Connection
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7. Programming Micro6

7.1. Micro6 assembly language

Assembly language or simply assembly is a human-readable notation for the machine language that a
specific computer architecture uses. Machine language, a pattern of bits encoding machine operations, is
made readable by replacing the raw values with symbols called mnemonics. Mnemonics replace opcodes
as well as references to operands, for example, register names and immediate data. An assembly language
statement may convey additional information too, for example, addressing modes and cross references to
other parts of the program.

Since Micro6 supports its own instruction set and instruction formats, an assembler was required. VAS
assembler was developed for this purpose. VAS is explained in detail in section 7.2.

7.1.1. Micro6 assembly language directives

In addition to codes of the machine instructions, Micro6 assembly languages provides extra directives for
assigning address locations for instructions or code. For simplicity of programming, the layout of the pro-
gram in memory is transparent to the programmer. However, instructions can be referenced symbolically
by labels.

Micro6 assembly has a simple symbolic capability for defining immediate data as constants. Remember
that Micro6 does not support immediate addressing mode but this mode is substituted by page-0 addressing
mode as explained in section 2.1.2.

Like most computer languages, comments can be added to the source code; these often provide useful
additional information to human readers of the code but are ignored by the assembler and so may be used
freely.

7.2. Micro6 VAS assembler

VAS stands for VHDL Assembler because it was written in VHDL, exploiting the programming capabilities
of the hardware description language. Moreover, the output of VAS is a VHDL package containing the
machine code. VAS is not an executable program. It must be invoked, or rather loaded and run, by an HDL
simulator.

VAS is a 2-pass cross assembler:

2-pass assembler: VAS goes through the source code (in assembly language) twice. The internal data
base is built in the first pass, which is used later in the second pass. This is explained in detail in
7.2.4.

Cross assembler: VAS produces machine code for the Micro6 microprocessor while it runs on a dif-
ferent computer system. Cross assemblers and compilers are usually used with new computer ar-
chitectures since running native compilers on such systems may produce unreliable results in early
development stages.

7.2.1. VAS components

VAS is composed of 3 VHDL units as follows:

1. VAS entity and architecture: this is the unit that is loaded by the simulator.
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2. Assembler package: a package containing the functions and procedures used by the assembler.

3. VHDL templates of the output file.

7.2.2. VAS input files
1. Assembly language program (Program segment)

2. Memory initial data (Data segment): this file is optional

7.2.3. VAS output files
1. VHDL package that declares the initial memory contents as a deferred constant. Using deferred

constants makes recompiling other design units unnecessary. However, compiling the output file is
still necessary.

2. Memory Coefficients file (COE). This file is used by Xilinx CoreGen to generate the necessary Block
RAM modules and initialize their contents.

7.2.4. VAS operation
Short DOS scripts were developed to run VAS through invoking ModelSim in batch mode. When exe-
cuted, the script accepts the assembly program file and the memory initial data file, loads the assembler in
ModelSim, runs it. The script also compiles the output package.
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8. Realization

Figure 8.1 shows the design flow adopted for realizing Micro6. Further details of each process are provided
in the subsequent sections.

Figure 8.1.: Design Flow
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8.1. Design Entry

8.1.1. Design Files

Micro6 is described in VHDL in a number of files. Each file contains either a package-package-body- or
an entity-architecture pair. Packages contain declarations (and specifications) of constants, functions and
procedures that are shared by multiple entities, architectures and other packages.

Table 8.1 shows a list of the design files:

Compile
order

File name Description

1 micro_pk.vhd The main design package containing the general constants, func-
tions and procedures declarations

2 micro_control_pk.vhd A package containing declarations related to the Control Unit +
the Decode Unit

3 micro_comp_pk.vhd A Package declaring all components referenced in the structural
descriptions of some units

4 register_en.vhd Register with asynchronous reset and enable inputs (variable
width)

5 counter.vhd Up-counter with asynchronous reset input (variable width)
6 counter_updown.vhd Updown-counter with asynchronous reset input (variable width)
7 mux2bus.vhd 2-input multiplexer (variable width)
8 mux4bus.vhd 4-input multiplexer (variable width)
9 alu.vhd The ALU
10 regFile.vhd The Register File
11 stack.vhd The Stack
12 fetch.vhd The Fetch Unit
13 control.vhd The Control Unit (Decode Unit instantiation + Execute Unit)
14 cpu.vhd The CPU (structural description)
15 micro_ram_pk.vhd A package defining the initial memory contents for simulation

purposes
16 memory.vhd A behavioural model (takes a long time for synthesis) of the

Main Memory
17 micro6_ram.vhd A VHDL description of the BlockRAM generated by CoreGen
18 main_memory.vhd A wrapper for the VHDL description of the BlockRAM gener-

ated by CoreGen
19 dcm_1.vhd Digital Clock Manager
20 dma.vhd The I/O Unit including the DMA functions
21 memCtrl.vhd The Memory Traffic Controller
22 baud.vhd The Baud Rate Generator for the UART
23 TxUnit.vhd The UART Transmitter
24 RxUnit.vhd The UART Receiver
25 miniUART.vhd The UART top-level
26 system.vhd Micro6 top-level
27 assembler_pk.vhd The Assembler package
28 assembler.vhd The Assembler entity-architecture pair

Table 8.1.: Design Files

8.1.2. Finite State Machine style

The FSM style adopted in designing almost all of the state machines of Micro6 is registered-outputs Moore
FSM with the output decoded from the next state. This saves one clock cycle compared with decoding the
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output from the current state. It also shows the advantages of registering the outputs, avoiding glitches for
example.

Figure 8.2.: FSM Style

8.2. Functional Verification

All the main modules of Micro6 (expect the Control Unit) were functionally verified using full test-
benches1. The testbenches were written according to the functional specifications of the individual units
under test UUT.

1A full testbench is defined as a testbench that generates the input stimuli and verifies the outputs against their expected values.
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Figure 8.3.: Full testbench

In order to verify the complete system, another approach was adopted: A few sample programs were
written in Micro6 assembly language along with the expected outcome. The programs were run on Micro6
and the outcome was compared with the expected one.

Sample program: Selection sort

Figure 8.4 shows an example of sorting a 6-element list using selection sort in ascending order.
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Figure 8.4.: Example of selection sort

The purpose of this program is to verify a subset of Micro6 instructions. The program sorts a list of
numbers using the selection sort algorithm in descending order. The list is identified by a memory location
which contains the number of elements. The elements of the list occupy consecutive memory locations.
The program is built of the main function that calls two subroutines, the first of which swaps two list
elements and the second finds the maximum element in a given sublist. The program source code and the
initial test data file are provided in appendix B.

The program is compiled using VAS which generates a memory model containing the program and the
test data. The microprocessor is then simulated and the memory contents are captured and compared with
expected values.

8.3. Synthesis

Since the target implementation technology is a Xilinx FPGA, ISE 7.1i is the selected implementation
environment. Micro6 was synthesized on XST (Xilinx Synthesis Technology).

The Synthesis is targeted to a Xilinx Virtex2Pro30 (xc2vp30-7-ff896) FPGA. A few snippets of the
synthesis report are provided below. The final synthesis report is provided in A.

8.3.1. Device utilization

Item Total Count Utilization
Slices 13696 2006 (14%)
Slice flip flops 27392 1574 (5%)
4 input LUTs 27392 3160 (11%)
Bounded IOBs 556 4 (0%)
BRAMs 136 8 (5%)
Multipliers (18x18) 136 1 (0%)
GCLKs 16 2 (12%)
DCM_ADVs 8 1 (12%)

Table 8.2.: Device Utilization
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8.3.2. Timing Summary

Item Value
Minimum period 5.251ns
Maximum frequency 190.454MHz
Minimum input arrival time before clock 2.240ns
Maximum output required time after clock 9.079ns
Maximum combinational path delay 0

Table 8.3.: Timing Summary

8.4. Implementation

What is meant in this context is the broad concept of FPGA implementation which includes all the processes
beyond the logic synthesis down to generating the configuration bitstream. The detailed description of such
processes is outside the scope of this thesis.

Additional units are added only in the implementation stage. These include the block RAM and DCM.

8.4.1. BlockRAM

For efficient utilization of the hardware resources available on the target device, CoreGen is used to generate
the memory blocks. The options listed below are passed to CoreGen:

• Core type: Single Port Block Memory v6.1

• Port configuration: Read and Write

• Width: 32

• Depth: 4096

• Write mode: Read after Write

• Primitive selection: Optimize for Area

• Design options: Enable pin (NO); Handshaking pins (YES); Register inputs (NO)

• Active clock edge: Rising edge triggered

• Write enable: Active-high

• Coefficients file: ram.coe (Generated by VAS).

8.4.2. DCM: Digital Clock Manager

DCM is a digital clock manager that provides multiple functions. It can implement a clock delay locked
loop, a digital frequency synthesizer, digital phase shifter, and a digital spread spectrum.

A DCM is instantiated in the top level of Micro6 to provide the clock pulses only after phase lock2 has
been achieved.

2Phase lock: the input clock is in phase with the feedback clock.
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8.4.3. Development board
Micro6 was implemented using an XUP (Xilinx University Programme) development board. The XUP
Virtex-II Pro Development System provides an advanced hardware platform that consists of a high perfor-
mance Virtex-II Pro Platform FPGA surrounded by a comprehensive collection of peripheral components
that can be used to create a complex system and to demonstrate the capability of the Virtex-II Pro Platform
FPGA.

Figure 8.5.: XUP Virtex-II Pro development board

8.5. On-chip Verification
The functional simulation is not enough to make sure that the system works since it3 does not take into
account the physical characteristics of the hardware.

This is why on-chip verification is exercised. Other faults that can be caught by on-chip verification and
not by functional simulation include those related to BlockRAMs, DCM (Digital Clock Manager) and pin
assignment. ChipScope Pro is used for this end as follows:

1. Generate an ICON (Integrated CONtroller) core.

2. Generate one or more ILA (Integrated Logic Analyzer) cores.

3. Instantiate the cores generated in steps 1 and 2 into the design.

4. Implement the design and download it on the chip.

5. Use ChipScope Analyzer to view the signals captured by the ILA cores.

Different configurations of ICON and ILA cores were used to verify different functionalities. For example,
for the sample program explained in section 8.2, an ILA core captures the memory contents after the
program finishes. Some temporary modifications to the Register File were introduced for this purpose,

3What is meant with simulation in this context is the functional verification explained in section 8.2.
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namely one of the registers was used as a debug register. The ILA core is triggered when the debug register
is loaded with a certain value.

ICON

ChipScope Pro achieves the communication between the PC (Personal Computer) and the FPGA chip over
the JTAG chain. The ILA cores are controlled by the ICON core which is connected to the JTAG chain. At
least one ICON core must be implemented in order to use ChipScope Pro.

ILA

The amount of observability of the design performance that on-chip verification provides is constrained by
the configuration of the ILA cores and the size of BlockRAM assigned for them. Clearly, these in turn
are constrained by the size of the target chip and that of the design. So, the designer has to use the ILA
cores carefully to achieve the maximum possible view over the design with efficient use of the available
resources.

The ILA configuration parameters are:

1. The number of signals to be monitored.

2. The number of signals used to trigger the ILA. A combination of triggering conditions can be con-
figured after implementation.

3. The amount of memory (BRAM blocks) assigned to store the values of the monitored signals.
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9. Further developments

This chapter suggests some of the developments that can be done for Micro6 to improve its performance
or increase its functions.

9.1. Pipelining the ALU
Barrel shifters are used to implement the shifting operations. Barrel shifters exhibit long propagation delays
and fall on the critical path of the design.

The current design allows shifting by up to 31 locations. Breaking it down into 3 stages is straightfor-
ward. The control unit must be modified to control the pipeline. The control unit and ALU can be made
intelligent to steer the data in different paths and hence save 1 or 2 clock cycles according to the shift count.

9.2. IO Operations
The current design causes the Control Unit to halt until the IO operation is complete. This is not efficient for
some operations. For example, in most cases, there is no need for the control unit to halt during outputting
large blocks of data. The control unit can be equipped with a means to decide whether to wait for the IO
operation to complete or not.

9.3. IO devices
Additional IO devices can be attached to Micro6. Micro6 allows up to 62 devices. Further developers are
encouraged to implement the following devices:

1. System clock and timer

2. Random number generator

3. Attaching a parallel interface such as Intel PPI (Programmable Peripheral Interface)
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10. References and Software tools

10.1. References
[1] Larry L Wear, James R Pinkert, Larry C Wear and William G Lane. An introduction to hardware and
software design. McGraw-Hill Education, 1991.

[2] Robert J. Baron and Lee Higbie. Computer architecture. Addison-Wesley publishing company, 1992.

[3] OpenCores website: www.opencores.org

10.2. Software packages
[1] Xilinx ISE 7.1i
[2] Mentor Graphics ModelSim SE 6.0a
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A. Final Synthesis Report

Figure A.1.: Final synthesis report
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A. Final Synthesis Report

Figure A.2.: Final synthesis report (continued)
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B. Sample program: Selection sort

B.1. Source code

Figure B.1.: Sample program
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B. Sample program: Selection sort

Figure B.2.: Sample program (continued)

B.2. Test data

The figure below shows a portion of the test data file. The full set of data is 100 elements.
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B. Sample program: Selection sort

Figure B.3.: Test data
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