
 The Microelectronics
 Training
 Center

The MTC is an initiative within the INVOMEC division

 Industrialization &
 Training in
 Microelectronics

Lab-exerc ise

This material was developed with support of the European Social Fund.
ESF: Prevent and combat unemployment by promoting employability,

entrepreneurship, adaptability and equal opportunities between women and men, and
by investment in people.

http://www.esf-agentschap.be

For Academic Use Only

IMEC2005 www.mtc-online.be

Lab 4:
VHDL basics: Register file

Cluster: Cluster1
Module: Module1e

Target group: Students

Version: 1.1
Date: 21/03/06
Author: Osman Allam
Modified by: Geert Vanwijnsberghe
History : 1/12/06 : testbench added

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1eV1.1_E.doc www.mtc-online.be 2/7

� � �� � ��� � � 	 � �

Register files are common in most computer systems. The structure of the register file has
significant impact on the performance of the microprocessor. The register file in Micro6 holds
ALU operands and results in addition to providing support for register indexed and register stack
addressing modes.

 � � � � 	�� �

After completing this module, you will be able to:

• Build relatively complex circuits;
• Understand different technique for structural modeling.

 � � � � � �� �� � �� � �� � �

• Basic knowledge of VHDL;
• Basic knowledge of HDL synthesis.

 � � � � � 	� 	 �� � 	 � �

• Level: 2
• Duration: 45 minutes

 � �� � �

VHDL template

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1eV1.1_E.doc www.mtc-online.be 3/7

� � � � �

The register file is a structural model in which you will use some of the units you have developed
in previous modules. The register file is composed of the following registers.

1. 28 General-Purpose registers
A 32-bit register each. These are used to hold data manipulated by the ALU.

2. 3 Index registers
A 9-bit register each. These are used for register-indexed addressing mode where the
address of the data to be read or written is the sum of the contents of an index register and
the contents of a general purpose register.

3. Stack pointer
A 9-bit updown-counter. The stack pointer controls the memory stack. This is a segment in
the main memory. Data can be pushed and popped from the stack by the instructions PUSH
and POP respectively.

���� � �� � � �	
� � � � � �� �

Describing a system with a structural model means expressing the system in terms of its building
blocks. The building blocks themselves can be composed of sub-systems, and so on. The
components of the bottom level of the hierarchy must be expressed only in terms of their
behavior.

VHDL provides 2 ways of structural description:

1. Entity instantiation
Also known as direct instantiation because you directly specify which entity and which
architecture to instantiate. You have to provide the following information for each instance:

a. The library where the entity is compiled;
b. The name of the entity;
c. The name of the architecture you want to use.

<i nst ance_l abel >: entity <l i br ar y_name>. <ent i t y_name>
(<ar chi t ect ur e_name>)
 generic map (
 - - gener i c associ at i on
)
 port map (
 - - por t associ at i on
) ;

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1eV1.1_E.doc www.mtc-online.be 4/7

2. Component instantiation
Before you can use this kind of instantiation, you have to declare components. You can do
that either in the declarative part of the architecture or in a separate package
(recommended).

a. Default binding

This is the simplest form of component instantiation. However, there are some
restrictions on using it:

• The component name and interface must match those of the entity.
• The entity must be compiled in a visible library.

In this kind of binding, component instances are bound to entities of the same name
as the components. In case of multiple architectures the last compiled one is
associated with the instance.

<i nst ance_l abel : <component _name>
 generic map (
 - - gener i c associ at i on
)
 port map (
 - - por t associ at i on
) ;

b. Configuration specification

If you want to use a specific entity-architecture pair for a particular instance, then
you may use configuration specification. You provide the same information as with
direct binding but you write them in the declarative part of the architecture using the
following syntax:

For <i nst ance_name>: <component _name> use entity
<l i br ar y_name>. <ent i t y_name> (<ar chi t ect ur e_name>)
 generic map (
 - - gener i c associ at i on
)
 port map (
 - - por t associ at i on
) ;

c. Configuration declaration

Configuration declaration provides a means to defer specifying the binding of
component instances. You can do that by declaring a configuration and associate it
with your entity. You can have as many configurations for a given entity as you want.
Every configuration is a separate design unit, which can be compiled and loaded by
the HDL simulator.
Configurations are a very powerful mechanism for component instantiations in
different levels of the hierarchy. Unfortunately, many synthesis tools do not support
configurations but you are encouraged to use them for simulation.

The simplest syntax rules for a configuration declaration is shown below.

Configuration <i dent i f i er > of <h_ent i t y> is
For <h_ar chi t ect ur e1>
For <i nst ance_name1>: <component _name1> use ent i t y
<l i br ar y_name>. <ent i t y_name> (<ar chi t ect ur e_name>) ;

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1eV1.1_E.doc www.mtc-online.be 5/7

End for; - - end of bi ndi ng i nf or mat i on.
. . –- bi ndi ng i nf or mat i on f or ot her component i nst ances
end for; - - end of h_ar chi t ect ur e1
. . –- bi ndi ng i nf or mat i on f or ot her ar chi t ect ur es.
End configuration;

Where h_ent i t y and h_ar chi t ect ur e1 are the entity and architecture of the higher level
structural model respectively.

 �
 �
 � � �
 � � � �
 �
 � �

A generate statement provides a mechanism for iterative or conditional inclusion of a portion of
code.

The portion of code must be concurrent statement(s) only. This means that generate statements
may not be used inside processes, functions or procedures.

In this module, we will explain using generate statements to instantiate several instances of the
same entity. Remember that a component instantiation is a concurrent statement.

<gener at e_l abel >: for x in <r ange> generate
 <i nst ance_l abel >: <component _name> port map (
 - - por t associ at i ons
) ;
end generate;

<gener at e_l abel > and <i nst ance_l abel > are mandatory. Every generate and
component instantiation statement must be labeled.
x is the range parameter.

The above code makes use of default binding.
 � �
 � � � �

Using the components you have designed in previous labs, construct a register file containing
the following components:

• 28 General-purpose registers: 32 bits wide;
• 3 Index registers: 9 bits wide;
• 1 Stack pointer: 9 bits wide updown-counter.

The register file has one input port (busC). The target register for write is selected by the
selection lines (selC).
The register file has 2 output ports (busA, busB). Selection lines (selA, selB) are used to select
which register output is connected to each one of these ports respectively.
Writing into all 32 registers is done by setting the address of the register on selC and by
asserting the wr input. The selected register will be updated at the next rising edge of the clock.
Incrementing or decrementing the Stackpointer is achieved by asserting the stkInc or stkDec
input. Also this action will be performed at the rising edge of the clock.

For all components, use default component instantiation as shown above. Use generate
statements for repetitive instantiation of the general-purpose registers.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1eV1.1_E.doc www.mtc-online.be 6/7

Register File

busA

busB
wr

stkDec
stkInc

selA
selB
selC

clk
rst

busC

 � �� �� 	
� � � �� � � 	� �� � 	� � � � 	

R00

R01

R02

R27

IX0

IX1

IX2

STP

General purpose registers

Index registers

Stack pointer

{

32-bit

9-bit

 � �� �� 	 �� � 	� � � � 	� �

In the attached template (file: cpu. vhd), the code below makes arbitrary signal assignments.
They have no impact on the operation of the register file, but they are useful in synthesis to avoid
generating unnecessarily long registers.

r eg_i nt (28) (31 downt o 9) <= (ot her s => ' 0') ;
r eg_i nt (29) (31 downt o 9) <= (ot her s => ' 0') ;
r eg_i nt (30) (31 downt o 9) <= (ot her s => ' 0') ;
r eg_i nt (31) (31 downt o 9) <= (ot her s => ' 1') ; - - see bel ow

The Stackpointer contains an address value located in the Stack Segment area. In our micro6
microprocessor this area is fixed and equal to 0xE00 – 0xFFF. This means that the initial value
of the Stackpointer has to be 0xE00. This is the reason why the most significant bits of the
Stackpointer are fixed to ‘1’. In the above figure only the bits are show that can be modified
synchronously by the stkInc and stkDec inputs.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1eV1.1_E.doc www.mtc-online.be 7/7

Use the template provided in the file cpu. vhd to describe the complete register file. The
tb_regFile.vhd should be used to verify the correct behaviour of the register file.

Have a close look at the testbench file since it shows some techniques to write testbenches in an
efficient way.

