
 The Microelectronics
 Training
 Center

The MTC is an initiative within the INVOMEC division

 Industrialization &
 Training in
 Microelectronics

Lab-exerc ise

This material was developed with support of the European Social Fund.
ESF: Prevent and combat unemployment by promoting employability,

entrepreneurship, adaptability and equal opportunities between women and men, and
by investment in people.

http://www.esf-agentschap.be

For Academic Use Only

IMEC2005 www.mtc-online.be

Lab 4:
Design of the ALU

Cluster: Cluster1
Module: Module2a

Target group: Students

Version: 1.1
Date: 21/03/06
Author: Osman Allam
Modified by: Geert Vanwijnsberghe
History : clarified difference between std_logic_1164 and std_numeric_std

The Microelectronics Training Center

For Academic Use Only

Lab4Mod2aV1.1_E.doc www.mtc-online.be 2/6

� � �� � ��� � � 	 � �

The Arithmetic and Logic Unit (ALU) is the functional unit of any computer system. It performs
the arithmetic, logical and shift operations demanded by user’s programs running on the
microprocessor.

The condition flags store information about the latest operation performed by the ALU. The
condition flags in our microprocessor are negative (neg), overflow (ovf) and zero (zro).

 �� � � �� �� �� � � � �� � �� � �

 � � �� � � 	�� � �

After completing this module, the student should be able to:

• Use and possibly overload standard functions;
• Convert from one type to another in VHDL;
• Describe arithmetic and logic operations in VHDL;
• Explain different types of shift and rotate operations.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod2aV1.1_E.doc www.mtc-online.be 3/6

� � � � �� �� � �� � �� � �� � �

• Understanding of the ALU function
• Basic knowledge of VHDL

 � � � � � 	� 	 �� � 	 � �

• Level: 3
• Duration: 90 minutes

 � �� � �

Specifications of the functions to be developed. VHDL templates are provided.
 	
� � � �

The IEEE library (IEEE.std_logic_1164.all) provides a wide range of logic functions.
The IEEE library (IEEE.std_numeric_std) provides many arithmetic functions, but most of them
take (un) s i gned and natural arguments.

Since all data ports in your design are st d_l ogi c_vect or , you need to convert them into
(un) s i gned and nat ur al in order to be able to use the arithmetic functions.

Converting a st d_l ogi c_vect or signal into a nat ur al one goes in 2 steps:

a. Casting into (un) s i gned.
b. Converting into nat ur al by using the function:
f unct i on TO_I NTEGER (ARG: UNSI GNED) r et ur n NATURAL;

Example:

si gnal ar g_st d : st d_l ogi c_vect or (7 downt o 0) ;
s i gnal ar g_uns : unsi gned (7 downt o 0) ;
s i gnal ar g_nat : nat ur al ;
…
ar g_uns <= unsi gned (ar g_st d) ;
ar g_nat <= t o_i nt eger (ar g_uns) ;

or you can do the conversion in one statement:

ar g_nat <= t o_i nt eger (unsi gned (ar g_st d)) ;

Converting a nat ur al signal into a st d_l ogi c_vect or one goes in 2 steps too:

1. Converting into (un) si gned by using the function:

f unct i on TO_UNSI GNED (ARG, SI ZE: NATURAL) r et ur n UNSI GNED;

and

f unct i on TO_SI GNED (ARG, SI ZE: NATURAL) r et ur n SI GNED;

The Microelectronics Training Center

For Academic Use Only

Lab4Mod2aV1.1_E.doc www.mtc-online.be 4/6

2. Casting into std_logic_vector.

Example:
ar g_uns <= t o_unsi gned (ar g_nat , 8) ;
ar g_st d <= st d_l ogi c_vect or (ar g_uns) ;

or you can do the converstion in one statement:

ar g_st d <= st d_l ogi c_vect or (t o_unsi gned (ar g_nat , 8)) ;

Our ALU in micor6 will be capable of performing the following functions : ADD_OP, SUB_OP,
MULT_OP, (DIV_OP, REM_OP), AND_OP, OR_OP, XOR_OP, INV_OP, INC_OP,
DEC_OP, ZRO_OP, PASS_A, PASS_B, SHR_ARTH, SHR_LGC, SHL_ARTH, SHL_LGC,
ROTR, ROTL . All off these function names are combined in an enumerated type alu_op that
you find in the micro_pk.vhd package.

1. Arithmetic functions

Addition, subtraction .. available in IEEE.std_numeric_std operate on signed operands and
return signed results. Therefore the above conversions and castings will be needed to apply
these functions on the ports that are all of type std_logic_vector.

2. Logic functions:

AND, OR, NOT, XOR operate on st d_l ogi c_vect or operands directly and return
st d_l ogi c_vect or results. No conversion or casting is required.

The functionality of the shift and rotate functions is shown below:
1. Arithmetic shift right by count : SHR_ARTH

these bits are lost

sign is extended

2. Arithmetic shift left by count : SHL_ARTH

0 0 0

these bits are lost

sign bit is
reserved

3. Logic shift right by count : SHR_LGC

The Microelectronics Training Center

For Academic Use Only

Lab4Mod2aV1.1_E.doc www.mtc-online.be 5/6

0 0 0

these bits are lost

4. Logic shift left by count : SHL_LGC

0 0 0

these bits are lost

5. Rotate right by count : ROTR

6. Rotate left by count : ROTL

� � �� � �� �

Design an Arithmetic and Logic Unit (ALU). Apart from performing a function it also updates 3
condition flags; negative (neg), overflow (ovf) and zero (zr o). The ALU is purely combinational
logic. It contains no storage elements. The condition flags are stored in 3 D-flip-flops outside the
ALU.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod2aV1.1_E.doc www.mtc-online.be 6/6

ALU

BA

clock

sel

shiftCntSource

neg ovf zro

shiftCnt

Result

The ALU implements the following functions:

1. Addition (result = A + B)
2. Subtraction (result = A – B)
3. AND (result = A AND B)
4. OR (result = A OR B)
5. XOR (result = A XOR B)
6. NOT (result = NOT A)
7. Increment by 1 (result = A + 1)
8. Decrement by 1 (result = A – 1)
9. Zero the result (result = 0)
10. Arithmetic/Logic shift by a given count to the right/left
11. Logic shift right by a count
12. Rotate by a given count to the right/left
13. Pass the left operand (result = A)
14. Pass the right operand (result = B)

The ALU has 3 data inputs:

1. A : the left operand
2. B: the right operand
3. shi f t Cnt : Shift/rotate count

The ALU has 2 control inputs:

1. sel : selects which operation to be performed. Possible values are declared by
constants of type alu_op in the package mi cr o_pk (constants of type al u_op).

2. shi f t Cnt Sr c : Shift count source: when active, the shifter uses the slice [5:0] of the
input B as the shift count. Otherwise, the shift count is the shiftCnt input.

The ALU has 2 outputs:

1. r esul t : the computation result
2. 3 condition flag outputs

Use the template provided in the file al u. vhd
In this module you only comple the alu.vhd file and compile it. The complete verification of the
code will be accomplished in the next module.
Not e : DIV_OP and REM_OP wi l l not be i mpl ement ed i n t hi s l ab.

