
 The Microelectronics
 Training
 Center

The MTC is an initiative within the INVOMEC division

 Industrialization &
 Training in
 Microelectronics

Lab-exerc ise

This material was developed with support of the European Social Fund.
ESF: Prevent and combat unemployment by promoting employability,

entrepreneurship, adaptability and equal opportunities between women and men, and
by investment in people.

http://www.esf-agentschap.be

For Academic Use Only

IMEC2005 www.mtc-online.be

Lab 4:
Design of t h e m em or y t r a ffic

c ont r ol l er

Cluster: Cluster1
Module: Module3b

Target group: Students

Version: 1.0
Date: 14/12/06
Author: Osman Allam
Modified by: Geert Vanwijnsberghe
History : testbench added

The Microelectronics Training Center

For Academic Use Only

Lab4Mod3bV1.1_E.doc www.mtc-online.be 2/5

 � � �� � ��� � � 	 � �

The Memory Traffic Controller arbitrates memory access between 3 logical units: the data path,
the fetch unit and the I/O unit. Units wishing to access the memory raise requests. According to
an arbitration scheme, the memory traffic controller grants access to a unit for a single memory
cycle.

 �� � � �� �� � � �� � � � � � � � � � � �

 � � �� � � 	�� �

After completing this lab, you will be able to:

• Identify different models of Finite State Machines (FSM);
• Design Finite State Machines (FSM) in VHDL;
• Understand the difference between FSM models from a synthesis point of view.

 ! � � " #� �$ � �% � &$ � �� � �

• Basic VHDL knowledge
• Understanding of the concepts of finite state machines

 ' # % 	(�% � 	 � �

• Level: 3
• Duration: 1 hour

 � �) � �

VHDL template and testbench.
 * +� # % �

There are two types of Finite State Machines (FSMs):

The Microelectronics Training Center

For Academic Use Only

Lab4Mod3bV1.1_E.doc www.mtc-online.be 3/5

1. Moore Machine
• Outputs are determined only by the current state
• Inputs of the machine in a given state determine the next state
• Outputs are associated with the states

2. Mealy Machine

• Outputs are determined by the current state and the inputs
• Inputs of the machine in a given state determine the next state
• Outputs are associated with state transitions (arcs, in the state transition graph)

 � �� �� � � �� � 	
� � �� � � �

Describing FSMs in VHDL is basically answering the following questions:

1. What states can the machine reach?
2. How does the machine transit from one state to another?
3. Which output does the machine create in the different states?

The first question is answered by defining the states. It is recommended to declare an
enumerated type for the states.

Type states is {state1, state2, state3, state4};

The second question is answered by the next state decoding logic. This is a combinational
logic block accepting the current state and inputs of the machine as its inputs and returning the
next state.

The third question is answered by the output decoding logic. This is also a combinational logic
block accepting the current state, and probably the inputs of the machine as its inputs and
returning the state machine outputs.

The state machine needs to remember its state. Usually this is done in the state memory where
the current state is registered every clock cycle.

In some applications, it is required to register the outputs of the state machine in the output
register, to avoid glitches and to achieve other implementation goals. However, registering the
outputs delays the response of the state machine by one clock cycle.

In summary, we have 4 blocks:

1. Next state decoding logic;
2. Output decoding logic;
3. State memory;
4. Possibly an output register.

Rearranging these blocks results in different models of state machines as illustrated below:

1. Moore Machine (used here)

Next state
decoding logic

State
memory

next
state

current
state

clk

Output decoding
logic

inputs outputs

2. Moore Machine with registered-outputs

The Microelectronics Training Center

For Academic Use Only

Lab4Mod3bV1.1_E.doc www.mtc-online.be 4/5

Next state
decoding logic

State
memory

next
state

current
state

clk

Output
register

Output decoding
logic

inputs outputs

3. Mealy Machine

Next state
decoding logic

State
memory

next
state

current
state

clk

Output decoding
logic

inputs outputs

4. Mealy Machine with registered-outputs

Next state
decoding logic

State
memory

next
state

current
state

clk

Output
register

Output decoding
logic

inputs outputs

 � � �� � � � �

The memory traffic controller arbitrates memory access between 3 master units: the data path
(CPU), the fetch unit (CPU) and the I/O unit. It is basically a 3-port multiplexer controlled by an
FSM. For simplicity, you can view the memory traffic controller as the combination of the FSM
and the multiplexer in one sequential circuit.

The competing units are assumed to keep their request lines active as long as they wish to
access the memory. When the memory traffic controller is not busy, it checks which request lines
are active. According to an arbitration scheme, only one unit gains control of the memory for as
long as a memory operation would take. The memory traffic controller hooks in a state where it
serves one unit and in this state other request lines are ignored. Such state is terminated by
receiving the ready signal from the memory and propagating it to the controlling unit.

Note that a “grant” signal is not required. The controlling units will effectively halt until their
requested memory operation is completed.

The arbitration scheme to be adopted by your design gives higher priority to the fetch unit
requests, and then comes the data path and then the I/O unit. Note, however that requests from
the currently controlling unit have the highest priority. This ensures that the active unit will keep
accessing the memory until its requested operation(s) is (are) complete.

In case no units are requesting memory access, the memory traffic controller transits to the state
where it serves the fetch unit. This is because the fetch unit accesses the memory more
frequently than the 2 other units (at least 1 access per program instruction).

The Microelectronics Training Center

For Academic Use Only

Lab4Mod3bV1.1_E.doc www.mtc-online.be 5/5

In a given state, the memory traffic controller connects the controlling unit to the memory. The
“ready” signal is propagated to the controlling unit. Other units receive inactive “ready” signal
from the memory traffic controller, which keeps their requests pending.

Serving
Fetch
Unit

fetch unit req. OR No rq.

I/O unit req.
Data path req.

Dat
a

pa
th

 re
q.

Data path req.

fetch unit req.fe
tc

h
un

it r
eq

.

I/O unit req.

I/O unit req.

N
o

re
q.

N
o req.

Serving
I/O
Unit

Serving
Data
Path

RESET 1

2 3

1

1

2
2

3
3

Use the template provided in the file memCtrl.vhd.

Note: The outputs of the FSM are not shown in the above diagram. However, since the memory
traffic controller acts as a multiplexer, the outputs are assumed to be associated with the states.
Hence, this is a Moore machine.

Memory
Traffic

Controller

Address

Ready
Read

Request

Address

Data

Ready
Read
Write

Request

Address

Data

Ready
Read
Write

Request

Data

Address

Data

Ready
Read
Write

Request

Fetch Unit

Data Path

I/O Unit

Memory

Use the testbench in tb_memCtrl.vhd to verify the controller. Remark that the testbench does not
verify all state transitions.

