
 The Microelectronics
 Training
 Center

The MTC is an initiative within the INVOMEC division

 Industrialization &
 Training in
 Microelectronics

Lab-exerc ise

This material was developed with support of the European Social Fund.
ESF: Prevent and combat unemployment by promoting employability,

entrepreneurship, adaptability and equal opportunities between women and men, and
by investment in people.

http://www.esf-agentschap.be

For Academic Use Only

IMEC2005 www.mtc-online.be

Lab 4:
Design of t h e st a c k

Cluster: Cluster1
Module: Module3c

Target group: Students

Version: 1.1
Date: 15/12/06
Author: Osman Allam
Modified by: Geert Vanwijnsberghe
History : Testbench added + small changes to the text

The Microelectronics Training Center

For Academic Use Only

Lab4Mod3cV1.1_E.doc www.mtc-online.be 2/4

 � � �� � ��� � � 	 � �

The stack in Micro6 holds the address of the instruction next to a subroutine call instruction to
insure that the calling program is continued after the subroutine returns.

ALU

ACC

MAR PC

Control unit

IR

Fetch Unit

MBR

Register file

Condition Flags

A

B

Data bus

in

Memory Traffic
Controller buses

to
fetch unit

address bus

to
data path

address bus

from
fetch unit
data bus

to
data path
data bus

from
data path
data bus

Stack
in

out

 �� � � �� �� �� � � � �� � �� � �

 � � �� � � 	�� � �

After completing this module, the student should be able to:

• Build a storage system in VHDL
• Describe how hardware stacks work

 � � ! "� �# � �$ � %# � �� � �

Basic VHDL knowledge
 & " $ � � 	' 	 �$ � 	 � �

• Level: 3
• Duration: 90 minutes

The Microelectronics Training Center

For Academic Use Only

Lab4Mod3cV1.1_E.doc www.mtc-online.be 3/4

� �� � �

VHDL template for the stack and a complete testbench tb_stack.vhd.
 � �� " $ �

Stacking is a data storage technique in which data is accessed in a last-in-first-out (LIFO)
manner.
There are 2 stack constructs in Micro6.

1. Hardware stack: this is a stand-alone, small stack used to save the contents of the
program counter (PC) when a jump or a call to a subroutine is encountered so that
returning to the calling routine is possible.

2. Memory stack: this is a segment in the main memory. The memory stack is much larger
than the hardware stack. It is used in Micro6 for passing parameters to subroutines.

In this exercise, we will focus on designing the hardware stack. The memory stack is simply
implemented by a stack pointer pointing to the next slot (location) of the stack segment. Its
operation is controlled directly by the control unit.
 �� �� �� � 	
 ��
 	 �

The basic components of the hardware stack are:

1. A set of registers (known as the stack slots). The number of the registers is the depth of
the stack.

2. A stack pointer (sp): conventionally, the stack pointer points to the next free slot of the
stack.

3. An output register
 �� �� �� � 	 �� �� ��

1. Push: Writing data into the stack is performed in 2 clock cycles:

a. Writing data into the slot pointed to by the stack pointer
b. Incrementing the stack pointer

2. Pop: Reading data from the stack is performed in 2 clock cycles:

The Microelectronics Training Center

For Academic Use Only

Lab4Mod3cV1.1_E.doc www.mtc-online.be 4/4

a. Decrementing the stack pointer
b. Reading data from the slot pointed to by the stack pointer

 � � � 	� �� �

Using the template provided in the stack.vhd file, design a stack with the following
specifications:

1. The depth of the stack is 16.
sp=0 =>empty
sp=16 => full

2. The width of the stack is unconstrained.
3. The stack operations, push and pop, are possible only when the enable input is

asserted.
4. The stack can be asynchronously reset without asserting the enable input.
5. Control inputs:

a. PUSH: higher priority
b. POP: lower priority
c. When the stack is full, push operations are ignored. And similarly, when it is

empty, pop operations are ignored. In both cases, the stack pointer and the
stack contents remain unchanged.

Use a finite state machine (FSM) to model your stack. There are 5 states:
1. Idle: the stack is in steady state.
2. Writing (wr): when the PUSH input is asserted, the stack input data is stored into the

Stack Slot pointed to be the Stack Pointer and additionally into the Output Register.
3. Incrementing (inc) the Stack Pointer.
4. Decrementing (dec) the stack pointer: when the POP input is asserted, the Stack Pointer

is decremented.
5. Reading (rd): following the Decrementing state, the Output Register is loaded by the

data in the Stack Slot pointed to by the updated Stack Pointer.

The state transition table is shown below.

Inputs Stack condition Current
State EN PUSH POP Empty(sp=0) Full(sp=16)

Next State

1 1 x x NO wr
1 0 1 NO x dec

idle

ELSE idle
1 1 x x NO wr
1 0 1 NO x dec

inc

ELSE idle
1 1 x x NO wr
1 0 1 NO x dec

rd

ELSE idle
wr x x x x x inc
dec x x x x x rd

Use the available testbench to verify your design.

