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The stack in Micro6 holds the address of the instruction next to a subroutine call instruction to 
insure that the calling program is continued after the subroutine returns. 
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After completing this module, the student should be able to: 

• Build a storage system in VHDL 
• Describe how hardware stacks work 
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Basic VHDL knowledge 
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• Level: 3 
• Duration: 90 minutes 
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VHDL template for the stack and a complete testbench tb_stack.vhd. 
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Stacking is a data storage technique in which data is accessed in a last-in-first-out (LIFO) 
manner.  
There are 2 stack constructs in Micro6. 

1. Hardware stack: this is a stand-alone, small stack used to save the contents of the 
program counter (PC) when a jump or a call to a subroutine is encountered so that 
returning to the calling routine is possible. 

2. Memory stack: this is a segment in the main memory. The memory stack is much larger 
than the hardware stack. It is used in Micro6 for passing parameters to subroutines. 

 
In this exercise, we will focus on designing the hardware stack. The memory stack is simply 
implemented by a stack pointer pointing to the next slot (location) of the stack segment. Its 
operation is controlled directly by the control unit.  
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The basic components of the hardware stack are: 

1. A set of registers (known as the stack slots). The number of the registers is the depth of 
the stack. 

2. A stack pointer (sp): conventionally, the stack pointer points to the next free slot of the 
stack. 

3. An output register 
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1. Push: Writing data into the stack is performed in 2 clock cycles: 

a. Writing data into the slot pointed to by the stack pointer 
b. Incrementing the stack pointer 

2. Pop: Reading data from the stack is performed in 2 clock cycles: 
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a. Decrementing the stack pointer 
b. Reading data from the slot pointed to by the stack pointer 
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Using the template provided in the stack.vhd file, design a stack with the following 
specifications: 

1. The depth of the stack is 16.   
sp=0 =>empty 
sp=16 => full 

2. The width of the stack is unconstrained. 
3. The stack operations, push and pop, are possible only when the enable input is 

asserted.  
4. The stack can be asynchronously reset without asserting the enable input. 
5. Control inputs: 

a. PUSH: higher priority 
b. POP: lower priority 
c. When the stack is full, push operations are ignored. And similarly, when it is 

empty, pop operations are ignored. In both cases, the stack pointer and the 
stack contents remain unchanged.  

Use a finite state machine (FSM) to model your stack. There are 5 states: 
1. Idle: the stack is in steady state. 
2. Writing (wr): when the PUSH input is asserted, the stack input data is stored into the 

Stack Slot pointed to be the Stack Pointer and additionally into the Output Register. 
3. Incrementing (inc) the Stack Pointer. 
4. Decrementing (dec) the stack pointer: when the POP input is asserted, the Stack Pointer 

is decremented. 
5. Reading (rd): following the Decrementing state, the Output Register is loaded by the 

data in the Stack Slot pointed to by the updated Stack Pointer. 
 
The state transition table is shown below. 
 

Inputs Stack condition Current 
State EN PUSH POP Empty(sp=0) Full(sp=16) 

Next State 

1 1 x x NO wr 
1 0 1 NO x dec 

idle 

ELSE idle 
1 1 x x NO wr 
1 0 1 NO x dec 

inc 

ELSE idle 
1 1 x x NO wr 
1 0 1 NO x dec 

rd 

ELSE idle 
wr x x x x x inc 
dec x x x x x rd 
 
Use the available testbench to verify your design. 
 
 
 


