
 The Microelectronics
 Training
 Center

The MTC is an initiative within the INVOMEC division

 Industrialization &
 Training in
 Microelectronics

Lab-exerc ise

This material was developed with support of the European Social Fund.
ESF: Prevent and combat unemployment by promoting employability,

entrepreneurship, adaptability and equal opportunities between women and men, and
by investment in people.

http://www.esf-agentschap.be

For Academic Use Only

IMEC2005 www.mtc-online.be

Lab 4:
Transfer assembly code into ram

contents

Cluster: Cluster1
Module: Module5c

Target group: Students

Version: 1.1
Date: 9/12/07
Author: Geert Vanwijnsberghe
Modified by:

The Microelectronics Training Center

For Academic Use Only

Lab4Mod5cV1.1_E.doc www.mtc-online.be 2/5

� � �� � ��� � � 	 � �

In the previous module the system (hardware) has been built while in this system the ram
contents will be created (Software).

 � � � � 	�� �

After completing this module, you should be able to transfer your own assembly code into
machine instructions.
 � � � � � �� �� � �� � �� � �

• Basic knowledge of ModelSim
• Basic knowledge of assembly code

 � � � � � 	� 	 �� � 	 � �

• Level: 2
• Duration: 1 hour

 � �� � �

• VHDL files
• Assembly program written in VHDL
• micro6_v2.pdf : thesis : Design and implementation of a 32-bit RISC microprocessor

 � � � � �

 �� � �� !" !#$ %& # % �

Assembly language or simply assembly is a human-readable notation for the machine language
that a specific computer architecture uses. Machine language, a pattern of bits encoding
machine operations, is made readable by replacing the raw values with symbols called
mnemonics. Mnemonics replace opcodes as well as references to operands, for example,
register names and immediate data. An assembly language statement may convey additional
information too, for example, addressing modes and cross references to other parts of the
program.
Since our microprocessor (called Micro6 hereafter) supports its own instruction set and
instruction formats, an assembler was required. The VAS assembler (VHDL assember) was
developed for this purpose.
In addition to codes of the machine instructions, Micro6 assembly language provides extra
directives for assigning address locations for instructions or code. For simplicity of programming,
the layout of the program in memory is transparent to the programmer. However, instructions
can be referenced symbolically by labels.
Micro6 assembly has a simple symbolic capability for defining immediate data as constants.
Micro6 does not support immediate addressing mode but this mode is substituted by page-0
addressing.
Like most computer languages, comments can be added to the source code.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod5cV1.1_E.doc www.mtc-online.be 3/5

�� � # � � �� ! ��

VAS stands for VHDL Assembler because it was written in VHDL, exploiting the programming
capabilities of the hardware description language. Moreover, the output of VAS is a VHDL
package containing the machine code to be stored in the memory. VAS is not an executable
program. It must be invoked, or rather loaded and run, by an HDL simulator.
VAS is a 2-pass cross assembler:
2-pass assembler: VAS goes through the source code (in assembly language) twice. The
internal data base is built in the first pass, which is used later in the second pass.
Cross assembler: VAS produces machine code for the Micro6 microprocessor while it runs on
a different computer system.
 �

�� �� �� 	
 �� � � � �
 � �� �� 	 � �� � � � � 	 ��
� � � �
� � �
 	 � 	� � 	� � � �� ���� �� 	� � �

� 	� � 	� � � � � �� �� � �
� � 	
 � � 	
 � � ��
 �� � 	 � � ���

 �� � � � ! $ �$ "�

VAS is composed of 2 VHDL units as follows:
1. VAS entity and architecture: this is the unit that is loaded by the simulator. (assembler.vhd)
2. Assembler package: a package containing the functions and procedures used by the
assembler. (assembler_pk.vhd)
 �� �#$!& " $# ! ��

1. Assembly language program (Program segment) (prog.asm)
2. Memory initial data (Data segment): this file is optional (data.asm)
3. Templates of the output files. (micro_ram_pk_top.vhd and micro_ram_pk_bottom.vhd and
ram_top.coe)

 �� � & " !& " $# ! ��

1. micro_ram_pk.vhd : VHDL package containing the initial memory contents. The memory
content is declared as a deferred constant (values in the body of the package) because the use
of deferred constants makes recompiling the other design units unnecessary. However,
compiling the output file (micro_ram_pk.vhd) is still necessary.
2. ram.coe : Memory Coefficients file (COE). This file is used in module 6 by Xilinx CoreGen to
generate the necessary Block RAM modules and initialize their contents. These Block RAM
modules are needed to synthesize and implement the memory on the virtexII-pro FPGA.

 % & �� �#� �' � � "

Assume that a list of integer data items is stored in the ram. The first item in the list is the
number of items. The sort program has to sort the items and store the again in the ram.

The sort program works by selecting the smallest/largest unsorted item remaining in the list, and
then swapping it with the item in the next position to be filled. In other words, the program
traverses a list with n-elements n-1 times. Each pass is 1 element shorter than the previous one.
Sub lists are sorted by swapping the top element with the smallest/largest one. The assembly
code for this algorithm is stored in prog.asm.

You have to complete this code. You find more info on the instruction mnemonics in chapter 3
of the “micro6_v2.pdf” file.

.LISTADDR #2999; -- Address containing the length of the list

LDM LISTADDR R11;
LD R11 R10;

The Microelectronics Training Center

For Academic Use Only

Lab4Mod5cV1.1_E.doc www.mtc-online.be 4/5

INC R11;
DEC R10;

$LOOP:
CPR R11 R13; -- PREVIOUS INDEX OF MIN ELEMENT

PSH R11; -- STARTING ADDRESS
PSH R10; -- LENGTH
JSR MIN;
POP R14; -- INDEX OF MIN ELEMENT
LD R13 R15;
LD R14 R16;
CMP R15 R16;
BNQ SWAP1;

$NEXT:
INC R11;
DEC R10;
BEQ END;
BRA LOOP;

$SWAP1:
PSH R13;
PSH R14;
JSR SWAP;
BRA NEXT;

$END:
END;

-- SUBROUTINE TO SWAP TWO LIST ELEMENTS
-- PARAMETERS:
-- 1: INDEX OF FIRST ELEMENT
-- 2: INDEX OF SECOND ELEMENT
$SWAP:
POP R1; -- INDEX OF SECOND ELEMENT
POP R0; -- INDEX OF FIRST ELEMENT
-- add your code here <--
-- do the swap of R1 and R0
-- you may use R2 and R3

RTN;

-- SUBROUTINE TO FIND THE MIN OF A LIST
-- PARAMETERS:
-- 1: STARTING ADDRESS
-- 2: LENGTH
-- RETURNS:
-- 1: INDEX OF MIN ELEMENT

$MIN:
POP R1; -- LENGTH
POP R0; -- STARTING ADDRESS

The Microelectronics Training Center

For Academic Use Only

Lab4Mod5cV1.1_E.doc www.mtc-online.be 5/5

CPR R0 R4;
ZRO R29;
INC R29;

$START:
LD R4 R2;
LDX R0 I1 R3;
CMP R2 R3;
BGT S1; -- NEXT ELEMENT
ADD R0 R29 R4;
CPR R3 R2;

$S1:
INC R29;
DEC R1;
BEQ FIN; -- FINISH
BRA START;

$FIN:
PSH R4;
RTN;

The data to be sorted is stored in the file data.asm.

The above program has to be converted in the memory contents package micro_ram_pk.vhd
using the VHDL assembler.
Start modelsim in the directory containing your files and use the commands below.

Modelsim> vlib work
Modelsim> vcom micro_pk.vhd
Modelsim> vcom micro_control_pk.vhd
Modelsim> vcom assembler_pk.vhd
Modelsim> vcom assembler.vhd

These commands create an assembler as a VHDL entity and architecture.
The simulation of this entity/architecture converts the prog.asm and data.asm files into
micro_ram_pk.vhd.

Modelsim> vsim -Gusetestdata=true work.assembler
Modelsim> run –all
 �

�� � � � � � � �� � � 	� �� � � � � 	 �� � � � � � � � � � � � �

 � � � 	
 	� � �
 � �� � �� � �� � �� � � � � � �� �

� � 	
� � � � � �
 � �
 � � � �� � �
��

You can verify the syntax correctness of micro_ram_pk.vhd by compiling it.

Modelsim> vcom -quiet micro_ram_pk.vhd

The memory organization you see in the micro_ram_pk.vhd file is shown in figure 2.9 of the
micro6_v2.pdf.

In the next lab we will combine the software and the hardware and verify the complete system.

