
 The Microelectronics
 Training
 Center

The MTC is an initiative within the INVOMEC division

 Industrialization &
 Training in
 Microelectronics

Lab-exerc ise

This material was developed with support of the European Social Fund.
ESF: Prevent and combat unemployment by promoting employability,

entrepreneurship, adaptability and equal opportunities between women and men, and
by investment in people.

http://www.esf-agentschap.be

For Academic Use Only

IMEC2005 www.mtc-online.be

Lab 4 :
V H D L bas i c s : m i c r o p r o c e s s o r

s p e c i f i c at i o n s

Cluster: Cluster1
Module: Module1a

Target group: Students

Version: 1.1
Date: 21/03/06
Author: Osman Allam
Modified by: Geert Vanwijnsberghe
History : 30/11/06 : testbench added

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1aV1.1_E.doc www.mtc-online.be 2/3

� � �� � ��� � � 	 � �

In this module, you will map some of the microprocessor Micro6 specifications in VHDL.
Basically, it is setting the framework of your design.

 � � � � 	�� �

After completing this module, the student should be able to:

• Identify the steps of designing a complex system
• Build VHDL packages.

 � � � � � �� �� � �� � �� � �

• Knowledge of the different design units in VHDL

 � � � � � 	� 	 �� � 	 � �

• Level: 1
• Duration: 20 minutes

 � �� � �

VHDL template of the package micro_pk.
 � � � � �

For large designs, it is good practice to build a package in which to declare all the constants,
types, subtypes, functions and procedures you will need in multiple units of your design.

Packages are defined in 2 parts.

1. Package declaration: defines the visible contents of the package. For example:
constants, types, subtypes & subprogram declarations.

2. Package body: provides the hidden details. For example: constant specifications (for
deferred constants), subprograms & subprogram bodies.

Using the template of the package micro_pk (file: micro_pk.vhd), do the following.

1. Declare constants for the data width and the address width of the microprocessor.
2. Declare a subtype for the opcode of the microprocessor. Note, all jump and branch

instructions are represented internally by a single opcode (JYY). For all other
instructions, the same opcodes as those shown in the previous module are used. In
total, there are only 28 different opcodes. The individual opcodes of each instruction are
represented by constants of the subtype you declare for the opcode.

3. Declare a type to define an array of data words. You may use the declaration of the data
width (from step 1).

4. Declare the function is_pos taking a signed as its argument and returning a
boolean. is_pos returns true if the argument is positive and false otherwise. The
negative numbers are represented by 2’s complement. The MSB is the leftmost bit.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1aV1.1_E.doc www.mtc-online.be 3/3

5. Write the body of the function is_pos in the package body.
6. Compile the micro_pack.vhd in library work
7. Compile the testbench tb_micro_pack.vhd in library work
8. Run a simulation for 1 ns

If you code is correct you will get only the messages
-- Check start --
-- Check done --

