
The Microelectronics Training Center

Introduction

Objectives

After completing this module, you will be able to design elementary combinational circuits.

Knowledge background

Basic VHDL knowledge

Classification

- Level: 1
- Duration: 30 minutes

Input

- VHDL template of 2-input multiplexer (mux2bus.vhd).
- VHDL template of 4-inputer multiplexer (mux4bus.vhd).

The lab

Multiplexers are combinational logic circuits. It is necessary to carefully cover all possible cases and include all relevant signals in the process sensitivity list (if you use a process). Deviation from these 2 rules may result in latches being generated and undesirable or unpredictable behavior

2014101	For Academic Use Only			
Lab4Mod1dV1.1_E.doc	www.mtc-online.be	2/4		

Training Center The MTC is an initiative within the INVOMEC division

Microelectronics

The

Industrialization & Training in Microelectronics

Lab-exercise

Lab 4: VHDL basics: multiplexers

Cluster: Cluster1 Module: Module1d

Target group: Students

Version: 1.0 Date: 21/03/06 Author: Osman Allam Modified by: Geert Vanwijnsberghe History : 4/12/06 : testbench added

This material was developed with support of the European Social Fund. ESF: Prevent and combat unemployment by promoting employability, entrepreneurship, adaptability and equal opportunities between women and men, and by investment in people. http://www.esf-agentschap.be

MTC

For Academic Use Only

www.mtc-online.be

©IMEC2005

Multiplexers can be modelled VHDL in one of the following two ways: **1. Concurrent statements:** A multiplexer can be a signal concurrent conditional signal assignment statement.

Example: 2-input multiplexer

-- ports

```
A, B : in bit_vector (7 downto 0);
Outp : out bit_vector (7 downto 0);
Sel : in bit;
...
-- concurrent statement
outp <= A when sel = `0', B when sel = `1';</pre>
```

2. Sequential statements within a process:

A multiplexer can be a case statement or an if-statement inside a process. Example: 2-input multiplexer

Selecting bit type for the selection line (sel) is to demonstrate the concept simply. However, if you use std_logic type (which should always be done), you have to take into account that a std_logic signal may take any of 9 possible values. Thus the first example has to be re-writen to cover all possibilites as follows

-- ports
...
sel : in std_logic;
...
-- concurrent statement
outp <= A when sel = `0', B when OTHERS = `1';</pre>

The second example doesn't have to be re-written (except changing the ports declaration) since "else" effectively covers all possibilities other than '0' in the if-condition. The same effect is

achieved by using 'OTHERS' in the concurrent assignment statement.

Exercise 1: 2-input multiplexer

Design a 2-input multiplexer. The inputs and output are unconstrained std_logic_vector. Use suitable width for the selection line(s). Implement your multiplexer as a case statement. Use the template provided in the file mux2bus.vhd.

For Academic Use Only		For Academic Use Only			
Lab4Mod1dV1.1_E.doc	www.mtc-online.be	3/4	Lab4Mod1dV1.1_E.doc	www.mtc-online.be	4/4

Exercise 2: 4-input multiplexer

Design a 4-input multiplexer. The inputs and output are unconstrained std_logic_vector. Use a suitable width for the selection line(s). Implement your multiplexer as a case statement. Use the template provided in the file mux4bus.vhd.

Use the testbench tb_mux to verify the multiplexers. This testbench does not contain automatic output comparison. This means that you have to verify the output manually.