
 The Microelectronics
 Training
 Center

The MTC is an initiative within the INVOMEC division

 Industrialization &
 Training in
 Microelectronics

Lab-exerc ise

This material was developed with support of the European Social Fund.
ESF: Prevent and combat unemployment by promoting employability,

entrepreneurship, adaptability and equal opportunities between women and men, and
by investment in people.

http://www.esf-agentschap.be

For Academic Use Only

IMEC2005 www.mtc-online.be

Lab 4:
V H D L bas i c s : m u l t i p l e x e r s

Cluster: Cluster1
Module: Module1d

Target group: Students

Version: 1.0
Date: 21/03/06
Author: Osman Allam
Modified by: Geert Vanwijnsberghe
History : 4/12/06 : testbench added

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1dV1.1_E.doc www.mtc-online.be 2/4

� � �� � ��� � � 	 � �

Basically, multiplexers are used to steer data and avoid data collision.

 � � � � 	�� �

After completing this module, you will be able to design elementary combinational circuits.
 � � � � � �� �� � �� � �� � �

Basic VHDL knowledge
 � � � � � 	� 	 �� � 	 � �

• Level: 1
• Duration: 30 minutes

 � �� � �

• VHDL template of 2-input multiplexer (mux2bus. vhd).
• VHDL template of 4-inputer multiplexer (mux4bus. vhd).

 � � � � �

Multiplexers are combinational logic circuits. It is necessary to carefully cover all possible cases
and include all relevant signals in the process sensitivity list (if you use a process). Deviation
from these 2 rules may result in latches being generated and undesirable or unpredictable
behavior.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1dV1.1_E.doc www.mtc-online.be 3/4

Multiplexers can be modelled VHDL in one of the following two ways:

1. Concurrent statements:
A multiplexer can be a signal concurrent conditional signal assignment statement.
Example: 2-input multiplexer

- - por t s
A, B : i n bi t _vect or (7 downt o 0) ;
Out p : out bi t _vect or (7 downt o 0) ;
Sel : i n bi t ;
. .
- - concur r ent st at ement
out p <= A when sel = ‘ 0’ , B when sel = ‘ 1’ ;

2. Sequential statements within a process:
A multiplexer can be a case statement or an if-statement inside a process.
Example: 2-input multiplexer

- - The same por t s as i n t he pr evi ous exampl e
. .
- - concur r ent st at ement
pr ocess (A, B, sel) –- r emember t hat pr ocesses t hemsel ves ar e
 - - concur r ent st at ement
begi n
 i f (sel = ‘ 0’) t hen
 out p <= A;
 el se
 out p <= B;
 end i f ;
end pr ocess;

Selecting bit type for the selection line (sel) is to demonstrate the concept simply. However, if
you use std_logic type (which should always be done), you have to take into account that a
std_logic signal may take any of 9 possible values.
Thus the first example has to be re-writen to cover all possibilites as follows

- - por t s
. .
sel : i n st d_l ogi c;
. .
- - concur r ent st at ement
out p <= A when sel = ‘ 0’ , B when OTHERS = ‘ 1’ ;

The second example doesn’t have to be re-written (except changing the ports declaration) since
“else” effectively covers all possibilites other than ‘0’ in the if-condition. The same effect is

achieved by using ‘OTHERS’ in the concurrent assignment statement.

� � �� � �� � �� 	�
 �� � � � � � � � � � � � �

Design a 2-input multiplexer. The inputs and output are unconstrained std_logic_vector. Use
suitable width for the selection line(s). Implement your multiplexer as a case statement.
Use the template provided in the file mux2bus. vhd.

The Microelectronics Training Center

For Academic Use Only

Lab4Mod1dV1.1_E.doc www.mtc-online.be 4/4

� � �� � �� � 	� �
 � � � � � � � � � � � � � �

Design a 4-input multiplexer. The inputs and output are unconstrained std_logic_vector. Use a
suitable width for the selection line(s). Implement your multiplexer as a case statement.
Use the template provided in the file mux4bus. vhd.
Use the testbench tb_mux to verify the multiplexers. This testbench does not contain automatic
output comparison. This means that you have to verify the output manually.

