
NanoFS v1.0

File System Specification rev. 1 (Draft)

Paulino Ruiz de Clavijo Vázquez <paulino@dte.us.es>

Enrique Ostúa Aragüena <ostua@dte.us.es>

1. About NanoFS

The NanoFS (Nano Filesystem) has been developed as a very simple file system aimed to be implemented as IPCore
in custom hardware designs. It has been designed from scratch keeping in mind the hardware implementation
limitations.

To reduce hardware resources a new internal layout of file system is proposed to optimize file system data
structures. The main feature is that the required data to navigate across file system layout and the file contents is
mixed. Each single data block in the storage device contains both parts. With this characteristic when part of file
data is fetched, the retrieved data contain a piece of file content and the required information about of location of
next part. This distinguishes it from the other file systems.

The new file system layout divides the storage device in data blocks structured as nodes of a linked list. The file
system is optimal when node size and block size in the storage device matches. All nodes of the file system are in a
forward linked list, being all data on device reachable. Internally all nodes contains two parts: fields with pointers to
other nodes and a field with the file data. The file data field has a fragment of the file contents. To simplify the
structures management, only exists two types of data node. One is called data node and is used to store file content.
The other node type represents directory entries and is used for directories tree structure.

2. File system layout

NanoFS consists of a data structures stored along the memory device. As in most filesystems, the block device is
divided in blocks of fixed size called block size filesystem. With NanoFS each block is refered by a unique integer
number called BlockNo. The block numbers are sequential starting in 0.

A NanoFS formated device is built as a linked list of nodes of NanoFS data structures. Each node of the filesystem is
stored in one or several straight blocks. The filesystem is stuctured in a linked list where nodes are referenced
using its blockNo.

Besides superblock with NanoFS a node contains a dir_node or data_node. The figure 1 depicts a nodes forming a
filesystem with nodes offsets (in bytes) and pointers referencing blockNos.

Main remarks about filesystem nodes and structs:

Rev. 1 (03/27/14)

mailto:paulino@dte.us.es
mailto:ostua@dte.us.es

NanoFS rev. 1 2

▪ Data is stored in little endian format

Figure 1. Example of NanoFS layout using 512bytes of block size.

2.1. Superblock

The starting point of NanoFS is the superblock located at byte offset 0 of memory/device. Superblock links with two
data structures: data blocks allocated and free data blocks. Field block size represents the field length multiplier

Offset in
bytes

Size in
bytes

Name Descrition

0 2 s_magic Magic Number 0x4E61

2 1 s_blocksize Block size

3 1 s_revision Revision

4 4 s_alloc_ptr Absolute blockNo of allocated root entry

8 4 s_free_ptr Absolute blockNo of start of free blocks list

12 4 s_fs_size Filesystem size in blocks

16 16 s_uuid Fixed NanoFS UUID

32 2 s_extra_size Extra superblock size in bytes

Table 1. Superblock data structure (nanofs_superblock).

Block size value Block size Max file system size

0 1 byte 4GiBytes

1 512 bytes 2TiBytes

2 4096 bytes 16TiBytes

Table 2. Block size field.

Superblock dir_node

dir_node

dir_node

dir_node

data_node data_node

dir_node

dir_node

data_node

data_nodedata_node

0x0000 0x0200

0x0400 0x0600 → 0x0E00

0x1000

0x1200 0x1400

0x2E00

0x1600 → 0x2C00 0x3000 → 0x4600

0x4800 → 0x7E00 0x8000 → 0xFE00

data_ptr=0x02

data_ptr=0x03

child_ptr=0x0A

next_ptr=0x18

next_ptr=0x08

next_ptr=0x09

next_ptr=0x17

data_ptr=0x0B

next_ptr=0x40free_ptr=0x24

alloc_ptr=0x01

NanoFS rev. 1 3

2.2. Allocated block data structure

Allocated blocks data structure is used to store directory structure and all content of files. This information is kept
using three types of nodes:

▪ Directory entry nodes

▪ Metadata nodes

▪ Data nodes

As seen above (fig 1), allocated blocks begin at root node linked from superblock. This root node is of type directory
entry and data contains filesystem label.

2.3. Directory entry structure

In the directory entries, pointers are 4 bytes length and its represent a absolute block number starting in 0. The
block number 0 is superblock. All pointers/block numbers are in little endian format.

Offset in
bytes

Size in
bytes

Field name Description

0 1 d_flags Directory entry flags

1 4 d_next_ptr Absolute blockNo of next directory entry

5 4 d_data_ptr Absolute blockNo of first child data block

9 4 d_meta_ptr Absolute blockNo of first metadata block

13 1 d_fname_len Length in bytes of filename

14 256 f_name Name of file

270 34 f_meta Standard metadata (see table 5)

Table 3. Directory entry structure (dir_node).

Directory entry field d_flags details:

7 6 5 4 3 2 1 0

d_flags f_metadata - - - - f_type2 f_type1 f_type0

1: Valid
standard
metadata
0: No
metadata

000: Directory
001: Reg. File
010: Character device
011: Block device
100: Fifo
101: Socket
110: Sym. Link

Table 4. Bits for d_flags byte.

As far as possible, the metadata structure uses the same fields and size that the ext2/ext4 () filesystem inodes
structures.

Standard metadata

Offset in bytes Size in
bytes

Field name Description

270 4 m_uid 32 bits owner user ID

274 4 m_gid 32 bits group ID

278 4 m_atime 32bit, the last time this file was
accesed (number of seconds since january 1st 1970)

NanoFS rev. 1 4

Standard metadata

282 4 m_ctime 32bit, time when the file was
created (number of seconds since january 1st 1970)

286 4 m_mtime 32bit, the last time when this file was
modified (number of seconds since january 1st 1970)

290 4 m_atime_extra See ref. [2]

294 4 m_ctime_extra See ref. [2]

298 4 m_mtime_extra See ref. [2]

302 2 m_mode Based in ext2/ext4 i_mode field with some limitations

Table 5. Standard metadata.

7 6 5 4 3 2 1 0

S_IWUSR S_IXUSR S_IRGRP S_IWGRP S_IXGRP S_IROTH S_IWOTH S_IXOTH

Owner may
write

Owner may
execute

Group
members
may read

Group
members
may write

Group
members
may execute

Others may
read

Others may
write

Others may
execute

Table 6. Bits for mode, lower byte (field m_mode, offset 302)

15 14 13 12 11 10 9 8

– – – – S_ISUID S_ISUID S_ISVTX S_IRUSR

Set UID Set GID Sticky bit Owner may
read

Table 7. Bits for mode node, upper byte (field m_mode, offset 303).

2.4. Data block and free blocks data structure

The following structure is used for data stored nodes and free nodes.

Offset in bytes Field name Size in
bytes

Field name

0 d_next_ptr 4 Absolute next block
pointer

4 d_len 4 Data length

8 d_data d_len Data

Table 8. Data nodes structure.

3. File system limits

▪ Max file name: 255 characters

▪ Hard links not supported

NanoFS rev. 1 5

4. References

[1] The Second Extended File System, Internal Layout, Dave Poirier, <instinc@gmail.com>
[2] Ext4 Disk Layout, <https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout>

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
mailto:instinc@gmail.com

	1. About NanoFS
	2. File system layout
	2.1. Superblock
	2.2. Allocated block data structure
	2.3. Directory entry structure
	2.4. Data block and free blocks data structure

	3. File system limits
	4. References

