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Abstract—This work presents a methodology that combines
the use of artificial neural networks and fuzzy logic for alarm
processing and identification of faulted components in electrical
power systems. Fuzzy relations are established and form a database
employed to train artificial neural networks. The artificial neural
networks inputs are alarm patterns, while each output neuron
is responsible for estimating the degree of membership of a
specific system component into the class of faulted components.
The proposed method allows good interpretation of the results,
even in the presence of difficult corrupted alarm patterns. Tests
are performed with a test system and with part of a real Brazilian
system.

Index Terms—Alarm processing, fuzzy logic, neural networks,
pattern recognition, power system protection.

I. INTRODUCTION

I N MODERN control centers, system operators usually
have to handle a large number of alarms and messages in

real time, and to take decisions on power system operation.
These alarms may be related to fault occurrences, protection
devices misoperations, etc. In many cases it is very difficult and
time-consuming to draw conclusions about what has happened,
particularly when protection schemes does not operate properly,
communication failures occur, corrupted data are processed,
etc. Following fault occurrences or other disturbances, it is
crucial to restore system normal operating conditions as soon
as possible. Then, alarm processing and diagnosis, including
the identification of faulted devices, becomes a very important
task to be addressed in real-time.

Many applications of intelligent systems techniques for
alarm processing and fault diagnosis have been proposed in the
technical literature. Most of them use expert systems [1]–[7], in
which a set of alarm patterns is employed for the construction
of a knowledge base. Human expertise is explored to build a
set of rules that form the inference engine for diagnosis in a
real-time environment. When a disturbance occurs, the alarm
pattern transmitted to the control center is evaluated through
the set of rules and a diagnosis is produced. However, expert
systems perform satisfactorily only for those situations that
have been previously considered during the development of
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the knowledge base. The major drawback of these methods
is the difficulty to deal with new or corrupted alarm patterns.
Alternatively, some methods based on the application of artifi-
cial neural networks (ANN) have also been proposed [8]–[15].
ANN-based methods overcome some drawbacks of expert
systems approaches, but still may present some difficulties to
achieve correct classifications, e.g., when the protection system
fails to operate. In such cases, it may be difficult to interpret the
results obtained at the ANN’s outputs. Applications of fuzzy
logic methods have been proposed in [16], [17]. However, those
methods are not capable of performing well in the presence of
corrupted/lost data.

This work extends the ideas presented in [10] and [17] and
proposes a new methodology based on ANN and fuzzy logic
for alarm processing and identification of faulted components
in power systems. Fuzzy logic allows one to take into account
qualitative information provided by human experts, such as ex-
perienced operators. On the other hand, ANNs are fault tol-
erant and present generalization capability, responding well for
new unseen patterns. Fuzzy relations are constructed and form
a database that is employed to train artificial neural networks.
The artificial neural networks have alarm patterns as inputs and
each output neuron is responsible for estimating the degree of
membership of an specific system component into the class of
faulted components. Thus, rather than simply trying to classify
each system component as faulted or nonfaulted, the ANN es-
timate degrees of membership, allowing better interpretation of
their outputs even under adverse circumstances, such as protec-
tion devices failures and/or data loss. Test results with a 7-bus
system and part of a real Brazilian system are presented to illus-
trate the proposed methodology.

II. ALARM PROCESSING AND FAULTED SECTION

IDENTIFICATION

Power systems are subject to the occurrence of faults or other
disturbances during their operation. Protection systems are
designed to isolate power system faulted components whenever
a fault occurs. This has to be done very quickly in order to
reduce the risk of damage in system electrical devices. Besides,
the interruption of energy supply must be minimized, or, when-
ever possible, avoided. Quickness, selectivity and coordination
are among the most desirable features of a protection system.
Then, protection devices should operate in a coordinated
scheme to guarantee that only the faulted components will be
disconnected. These devices also provide backup protection,
i.e., if the protection device responsible for isolating the faulted
component does not operate properly, other protection devices
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must operate in order to eliminate the fault. When this happens,
a larger area in the system is usually disconnected, which may
impose difficulties for the identification of faulted devices.

The most commonly used power systems protection de-
vices/schemes are as follows.

• Differential protection relays (DP)—the main character-
istic of a differential relay is selectivity. It is designed to
operate only for faults in the protected zone. It is usu-
ally employed for busbar protection, transformers protec-
tion, generation protection, and short transmission lines
protection.

• Distance relays—these relays are mainly used for trans-
mission line protection in meshed networks. It usually
consists of three protection zones:

main protection zone (MP)—responsible for detecting
and eliminating faults in 100% of the transmission line,
must operate without any time delay, using teleprotec-
tion schemes;
first zone backup protection (Z1)—responsible for pro-
tecting about 80% of the transmission line, it serves as
an instantaneous backup protection for the main pro-
tection zone;
second zone backup protection (Z2)—usually set to
120–150% of the length of the line, it serves as backup
protection for adjacent transmission lines.

• Breaker failure protection (BF)—this protection scheme
is employed to operate whenever a breaker failure is
detected. When this happens, a tripping command is sent
to remote breakers without any time delay. This prevents
electrical devices damages due to a sustained faulted
condition.

• Circuit breakers (CBs)—the circuit breakers effectively
change network topology through their operation, usually
following a tripping command sent by a protection relay.

Other protection devices such as overcurrent relays, ground
fault relays, etc. are also employed in the protection system [18].

Following the operation of a protection relay, a tripping com-
mand is sent to circuit breakers, which will isolate part of the
system. Alarms and messages are also transmitted to the control
center. There, the incoming alarms must be analyzed by system
operators, which have to draw conclusions and take decisions
about system maintenance and restoration. The large amount of
information to be addressed and other problems such as loss of
important information, protection system failures, etc. can make
the faulty system analysis a very difficult task, particularly when
real-time actions are needed.

III. FUZZY LOGIC AND NEURAL NETWORKS

Imprecision and uncertainty are two major characteristics
that may be found in the information to be processed during
the solution of a given problem. Probability theory has been
largely employed to represent uncertainty in mathematical
models. Data uncertainty has been modeled and handled using
statistical models, probability theory and random processes.
Although very useful, these theories and models may be not
able to perceive and represent many aspects of the information
provided by human experts.

Fuzzy set theory [19] has been developed to deal with impre-
cision, ambiguity, and vagueness in information. It can be seen
as a theory of classes of objects with nonsharp boundaries and,
being less restrictive than the conventional sets theory, is more
adequate to represent information provided by human experts.

Fuzzy set theory is suitable to deal with processes that present
one or more of the following characteristics [20]:

• human interaction is involved;
• an expert is available to specify the rules underlying

system behavior and the fuzzy representations;
• a mathematical model of the process does not exist or is

difficult to encode;
• the process involves continuous phenomena, not easily

broken down into discrete segments; or
• noisy data are present.

Fuzzy variables have the property of mapping gradual state
transitions. A fuzzy set element may both belong to a fuzzy set
A and a fuzzy set B. The degree of vagueness, ambiguity or im-
precision concerning the association of the element with a fuzzy
set can be described by its membership function in the fuzzy sets
A and B. Classification tasks, instead of trying to associate each
pattern to a single class, may involve the evaluation of the asso-
ciated membership functions. This allows handling with more
complex mapping problems and the class identification may be
achieved through the analysis of the computed degrees of mem-
bership. The mathematical foundations of fuzzy sets have been
extensively covered by the technical literature [21].

ANNs have the ability to acquire knowledge about a problem,
learning from historical or simulated data. They are able to
process a large amount of information and present execution
times that are compatible with real-time requirements. Besides,
ANN are fault tolerant and present excellent generalization
capability, being able to deal with unseen alarm patterns.

Many ANN models have been proposed in the technical
literature [22]. These models differ basically on the network
topology, neuron model, and training strategy. In this work,
multilayer perceptron (MLP) model is employed in the con-
struction of ANN classifiers.

The MLP model uses supervised learning and is capable of
approximating any decision region. The training strategy usu-
ally employs the Backpropagation error-correction algorithm.
This model has been extensively adopted for the solution of pat-
tern recognition problems. More details about the MLP model
and the Backpropagation algorithm can be easily found in the
technical literature [22].

IV. PROPOSED METHODOLOGY

As discussed in Section III, fuzzy models are capable of
dealing with qualitative and uncertain information provided by
human experts based on their knowledge and experience in the
solution of a given problem. On the other hand, ANN models,
which may have difficulties to represent some qualitative
information, present characteristics such as generalization
capability and fault tolerance, which are highly desirable for
performing complex mappings, particularly when the problem
domain cannot be completely covered and represented by
human expertise.
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Fig. 1. Seven-bus electrical power system.

In this section, a neuro-fuzzy based approach is proposed
for alarm processing and faulted sections identification in
power systems. In a first step, fuzzy relations representing the
relationship among many different alarm patterns and possibly
faulted system components are obtained. Then, in a second
step, databases containing the fuzzy associations serve as
training sets for ANN that are trained to estimate the degrees of
membership of each system component into the class of faulted
components. The proposed method is detailed as follows.

A. Construction of the Fuzzy-Based Training Set

A fuzzy relation can be represented by a sagittal diagram
[16]. Three sets of nodes are considered for representing system
components, relays and circuit breakers. The sagittal diagrams
are built considering the causal operations of relays and circuit
breakers in the occurrence of a fault and the causality is denoted
by arrows. Considering the test system presented in Fig. 1, a
sagittal diagram may be constructed for each component. Fig. 2
illustrates the sagittal diagram for transmission line A–B.

In Fig. 2, each node designation is associated with a specific
protection device and its location in the network. The label on
each line connecting two nodes is determined with the aid of
experienced protection engineers, which are able to adequately
weight the associations between components, relays, and circuit
breakers. This is done according to their knowledge and/or
through the analysis of historical data from protection systems
operation. The protection devices considered in this paper are
those previously presented in Section II. Then, the adopted
labels reflect the strength of the associations among relays
operation and faults involving a specific system component.
For example, for a transmission line the first zone protection
is closely related, due to its selectivity, while the association
with the second protection zone is weaker as it may operate in
case of faults involving adjacent components. The associations
among relays and circuit breakers can be established in the
same manner. These associations can be seen in the sagittal
diagram of Fig. 2.

The fuzzy associations between alarm patterns and system
components can be determined with the help of the sagittal dia-
grams by performing two steps:

Fig. 2. Sagittal diagram for transmission line A–B.

1) intersection of the labels of the line that make a path
through the node that represent the system component
and those representing relays and circuit breakers that
have operated;

2) union of the results obtained in step 1) for the paths con-
nected to one component.

The result of step 2) yields the degree of membership of
system components in the class of faulted components.

The min and max operators have been usually adopted to
represent the intersection and union of fuzzy sets, respectively.
Alternative operators have also been proposed. These proposals
vary with respect to the generality or adaptability of the
operators as well as to the degree to which and how they are
justified [20]. Adaptability may be achieved through the use of
parameterized families of operators, which may be very useful
for obtaining membership functions in a variety of problems.
In [17], a simulation study has been carried out to compare
four families of operators with respect to their capability of
obtaining fuzzy relations among alarm patterns and possibly
faulted system components. Among the tested families, the
Hamacher’s model [20], with parameter , was found to
be the most adequate. In this model, the intersection and union
of two fuzzy sets A and B are defined in terms of the parameter

as follows:

(1)

(2)
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Fig. 3. ANN model.

where , and .
and are the membership functions of A and B,

respectively, and x is an element of the universe of discourse.
Then, many different alarm patterns may be evaluated and

the degrees of membership associated with system components
may be computed. A database containing the fuzzy associations
is then constructed and may serve as training set for ANNs, as
will be detailed in the next section.

B. Construction of ANN Classifiers

The ANN construction explores the fact that it is possible to
identify a faulted component based only on information from
alarms that come from a restricted area of the system. Thus, a
local strategy is adopted to reduce the problem dimension. This
is done by employing several ANNs, each of them responsible
for estimating the degree of membership of system components
of the corresponding area into the class of faulted components.
This can be illustrated for the seven-bus test system shown in
Fig. 1. The system is arbitrarily divided into three different areas
that enclose different components. In this case, three different
ANN are employed, each of them being responsible for moni-
toring system components in a specific area.

The training sets are constructed considering alarm patterns
associated with different fault conditions involving different
system components. For each ANN the input variables consist
of alarms from relays and circuit breakers that may operate
in case of faults involving components in the monitored area.
Each input variable is binary, being equal to 1 if it represents an
alarm that has been received or equal to 0 if the corresponding
alarm has not been received. The number of output variables
corresponds to the number of components being monitored.
Each training pattern is then formed by an input/output pair,
where the input vector represents an alarm pattern for a given
fault condition, while each desired output contains the degree of
membership of each monitored component in the set of faulted
components. The fuzzy associations that form the training set
are obtained using the procedure described in the last section.

The ANN model adopted is the MLP, which is illustrated
in Fig. 3 for input variables and outputs (monitored
components).

C. Real-Time Diagnosis

In real time, the alarm pattern received at the control center
after a disturbance may be evaluated using the off-line trained
ANNs. The selection of the ANNs to be tested for a given alarm
pattern depends on the incoming alarms. An ANN is selected
whenever there is, among its input variables, at least one of the
alarms received. Then, due to the criterion described in Section
IV-B for choosing input variables for each ANN, the faulted
component will certainly be inside one of the areas monitored
by the selected ANNs. The following steps are employed for
producing a final diagnosis:

(i) select the ANNs for which at least one of the incoming
alarms is an input variable;

(ii) present the input pattern for each selected ANN and com-
pute the degrees of membership of system components at
the ANN outputs;

(iii) produce a final diagnosis based on the analysis of the
estimated degrees of membership.

In step (iii), the final diagnosis is achieved by observing all
computed outputs and assuming as faulted the system compo-
nent with the highest degree of membership.

The fuzzy mapping employed allows good interpretation of
the computed outputs for producing correct diagnoses even in
difficult situations, where corrupted or incomplete alarm pat-
terns are observed. This would not be the case if, instead of
fuzzy associations, binary associations were constructed in the
training set. In such case, neuron outputs would be trained to
simply classify system components as faulted or not faulted (de-
sired output equal to 1 or 0, respectively). Difficult alarm pat-
terns would cause two or more neuron outputs to be very close
and/or lying in the midrange between 1 and 0, not allowing a
reliable interpretation of the results.

V. TEST RESULTS

Many tests have been performed to evaluate the proposed
methodology. The alarm patterns employed to train the ANN
classifiers correspond to many different fault conditions. The
desired outputs for each training pattern are degrees of mem-
bership obtained using the relations presented in Section IV,
where sagittal diagrams are constructed for system components
and a fuzzy inference is performed using the Hamacher’s model
with parameter . Once trained, the ANNs are tested using
new, unseen alarm patterns, including cases in which there
are misoperations of the protection system, protection devices
failure, missing data, etc. The simulations have been carried
out for the test system of Fig. 1 and for part of a real Brazilian
system (LIGHT, Brazilian utility responsible for energy supply
in the Rio de Janeiro area), shown in Fig. 4. The ANN model
adopted was the MLP, trained with the Backpropagation
algorithm. The best architectures for each ANN are presented
in Tables I and II for the 7-bus test system and the LIGHT
system, respectively. The number of training patterns (TP) is
also shown. Note that the choice of input and output variables
for each ANN followed the strategy presented in Section IV-B.

In the following sections, some test cases are presented to
illustrate the proposed methodology.
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Fig. 4. Part of a Brazilian system (LIGHT system).

TABLE I
TRAINING DATA (7-BUS SYSTEM)

TABLE II
TRAINING DATA (LIGHT SYSTEM)

A. Tests Using the 7-Bus Test System

Table III illustrates some of the test cases employed for
testing the 7-bus system. Note that these test samples were not
presented during the ANN’s training phase and correspond to
situations where protection devices malfunctions or data loss
are present. The ANNs tested during the classification phase,
selected automatically as described in Section IV, are also
presented. Table IV shows the obtained results. The results
obtained for each test case are presented in each column of
Table IV.

The computed outputs are estimates of the degree of mem-
bership of each system component in the class of faulted com-
ponents. The largest degree of membership obtained for each
test case is highlighted in Table IV. According to the proposed
methodology the system component associated with the larger
degree of membership is classified as faulted. It can be seen
that in all cases the faulted components have been correctly
identified.

TABLE III
SOME TEST CASES FOR THE 7-BUS SYSTEM

TABLE IV
OBTAINED RESULTS (7-BUS SYSTEM)

B. Tests Using the LIGHT System

Table V illustrates some of the test cases employed for testing
the LIGHT system. Again, the test samples were not presented
during the ANN’s training phase and correspond to situations
where protection devices malfunctions or data loss are present.
The ANNs tested during the classification phase are also pre-
sented. Note that, according to the procedures for real-time di-
agnosis presented in Section IV, only the ANNs associated with
areas 1, 2, 3, and 4 are selected and tested for the incoming
alarms shown in Table V. Table VI shows the obtained results.

Once more, the largest degree of membership estimated for
each test case is associated with the faulted component.
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TABLE V
SOME TEST CASES FOR THE LIGHT SYSTEM

C. Global Results

Besides the test cases presented in Tables III and V, many
other new alarm patterns have been evaluated using the pro-
posed methodology. Most of them consisted of alarms obtained
for situations where protection devices failures and/or data loss
are present. Table VII illustrates the global results for classifi-
cations performed with the 7-bus system and with the LIGHT
system.

The results in Table VII show that the proposed method pre-
sented excellent performance, providing good interpretation of
corrupted alarm patterns. Many of these patterns involve mul-
tiple protection devices failures and/or data loss. Besides, it has
been observed that correct classifications are always achieved
when the protection system operates properly. The computa-
tional burden involved in testing the selected ANNs can be con-
sidered negligible.

It is important to emphasize that incorrect classifications were
obtained for very corrupted alarm patterns, usually due to the
combination of multiple noncorrelated protection devices fail-
ures and/or data loss. Although employed for testing the pro-
posed method under severe scenarios, many alarm patterns are
not likely to happen, particularly those that were not correctly
classified.

D. Final Comments

The neuro-fuzzy approach proposed in this paper is more
powerful than the neural approach presented in [10]. Improve-
ments in the ANN classifications are particularly noted for situ-

TABLE VI
OBTAINED RESULTS (LIGHT SYSTEM)

TABLE VII
GLOBAL RESULTS

ations where protection systems failures occur. This happens be-
cause binary associations are constructed in the neural approach
[10] and neuron output values in the midrange between 0 and 1
do not provide reliable interpretation for correct classification
and diagnosis. On the other hand, fuzzy associations are con-
structed in the proposed model. The ANNs are trained to pro-
duce output values that are real numbers in the range 0–1. These
output values are estimated degrees of membership, and can al-
ways be interpreted for classification and diagnosis. It is impor-
tant to remark that, using the proposed neuro-fuzzy approach,
correct diagnoses have been achieved for 100% of the situations
that have been considered on [10] for testing the neural model.
In [10] the correct diagnoses rate was 91.22%. Besides, the pro-
posed model does not produce undetermined diagnoses, which
might occur if the model proposed in [10] is used. Incorrect di-
agnoses observed in this paper also occur when the neural model
of [10] is adopted.

The proposed model is capable of dealing with corrupted
alarm data, protection devices failure and, in many cases, also
with the combination of these situations. Many of them have
been considered for testing the adopted methodology and incor-
rect classifications related in Table VII were achieved only for
rare and difficult combination of those situations. It is also im-
portant to observe that in the presence of multiple faulted com-
ponents, more than one output neuron of the tested ANNs will
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present large and close values for the estimated degree of mem-
bership of the corresponding elements, flagging that these are
faulted. Also, to some extent, the proposed model is capable of
dealing with different network topologies without need of re-
training. This is due to ANN’s generalization capability. For ex-
ample, test case 2 of Table III represents a situation in which the
circuit breaker operation at line A–E is not among the incoming
alarms either because a communication failure has occurred or
because line A–E is out of service. Although this represents
a topology condition different from the one considered during
the training phase, the ANN classifiers performed correctly. It
should be noted, however, that for major topology changes it
may be necessary to retrain the ANN that monitors components
in the area where system reconfiguration took place.

The design of the proposed hybrid system allows the incorpo-
ration of some qualitative aspects of the problem to be solved.
This is one of the main advantages of the neuro-fuzzy approach,
as not only general knowledge on protection systems theory,
but also specific knowledge on the power system and protec-
tion system under consideration can be easily represented. This
is achieved by properly constructing and weighting the asso-
ciations among components, relays and circuit breakers in the
sagittal diagrams described in Section IV. Besides, ANN’s ro-
bustness makes it possible to carry out correct diagnosis even for
difficult and/or unseen situations. It is also worthy mentioning
that the maintenance of the proposed model is not difficult to ad-
dress. As the employed ANNs act as almost independent classi-
fiers, each of them monitoring different system components, in
specific areas of the system, only one or a few ANNs may need
to be retrained if the system experiences significant changes,
such as network expansion, in a specific area.

Due to the local strategy adopted, the proposed model can be
easily used to cover more areas in a larger power system. This
is done by constructing more ANN classifiers, which would be
responsible for monitoring more areas in the system. Also, the
classification accuracy would not be influenced by the system
size.

A prototype system based on the proposed model is under
development to be implemented in the LIGHT control centre.
Practical aspects of implementation and the experience with the
prototype in an actual control centre will be subject of a future
paper.

VI. CONCLUSION

This paper presented a neuro-fuzzy approach for alarm pro-
cessing and identification of faulted components in electrical
power systems. Fuzzy relations among alarm patterns and pos-
sibly faulted system components are established and employed
as training sets for artificial neural networks. The ANNs are
trained to produce online estimates of the degrees of member-
ship of system components into the set of faulted components
whenever a new alarm pattern is received at the control center.
The methodology has been tested using a 7-bus system and
part of a real Brazilian system. Test results show that correct
diagnoses have been achieved from the analysis of the fuzzy
inferences produced at the neural networks outputs. Even dif-
ficult corrupted alarm patterns have been correctly classified.

The ability of producing good estimates for degrees of mem-
bership and correct diagnoses for the incoming alarms is due
to the ANN’s generalization capability and to the fact that using
fuzzy inferences as desired outputs allows a better interpretation
at the class boundaries, where corrupted alarm patterns may be
difficult to interpret.
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